




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆蘇教版高考沖刺押題(最后一卷)數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.2.記其中表示不大于x的最大整數,若方程在在有7個不同的實數根,則實數k的取值范圍()A. B. C. D.3.袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數,則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.4.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.5.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.6.若的展開式中二項式系數和為256,則二項式展開式中有理項系數之和為()A.85 B.84 C.57 D.567.已知函數的最小正周期為,為了得到函數的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度8.已知,則下列不等式正確的是()A. B.C. D.9.若的展開式中的系數為-45,則實數的值為()A. B.2 C. D.10.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.11.2019年10月17日是我國第6個“扶貧日”,某醫院開展扶貧日“送醫下鄉”醫療義診活動,現有五名醫生被分配到四所不同的鄉鎮醫院中,醫生甲被指定分配到醫院,醫生乙只能分配到醫院或醫院,醫生丙不能分配到醫生甲、乙所在的醫院,其他兩名醫生分配到哪所醫院都可以,若每所醫院至少分配一名醫生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種12.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數,滿足不等式組,則的最小值為______.14.設為等比數列的前項和,若,且,,成等差數列,則.15.已知曲線,點,在曲線上,且以為直徑的圓的方程是.則_______.16.已知數列滿足,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)若函數在是單調遞減的函數,求實數的取值范圍;(2)若,證明:.18.(12分)已知函數.(1)當a=2時,求不等式的解集;(2)設函數.當時,,求的取值范圍.19.(12分)已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當直線經過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標為(1)求橢圓的方程;(2)點為內一點,為坐標原點,滿足,若點恰好在圓上,求實數的取值范圍.20.(12分)已知函數,(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數,當時,試判斷的零點個數.21.(12分)已知兩數.(1)當時,求函數的極值點;(2)當時,若恒成立,求的最大值.22.(10分)設數列,的各項都是正數,為數列的前n項和,且對任意,都有,,,(e是自然對數的底數).(1)求數列,的通項公式;(2)求數列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.2、D【解析】
做出函數的圖象,問題轉化為函數的圖象在有7個交點,而函數在上有3個交點,則在上有4個不同的交點,數形結合即可求解.【詳解】作出函數的圖象如圖所示,由圖可知方程在上有3個不同的實數根,則在上有4個不同的實數根,當直線經過時,;當直線經過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數根.故選:D.【點睛】本題考查方程根的個數求參數,利用函數零點和方程之間的關系轉化為兩個函數的交點是解題的關鍵,運用數形結合是解決函數零點問題的基本思想,屬于中檔題.3、C【解析】
先確定摸一次中獎的概率,5個人摸獎,相當于發生5次試驗,根據每一次發生的概率,利用獨立重復試驗的公式得到結果.【詳解】從6個球中摸出2個,共有種結果,兩個球的號碼之和是3的倍數,共有摸一次中獎的概率是,5個人摸獎,相當于發生5次試驗,且每一次發生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.【點睛】本題主要考查了次獨立重復試驗中恰好發生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,利用公式做出結果,屬于中檔題.4、C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.5、B【解析】
設雙曲線的漸近線方程為,與拋物線方程聯立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.6、A【解析】
先求,再確定展開式中的有理項,最后求系數之和.【詳解】解:的展開式中二項式系數和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數之和為:故選:A【點睛】考查二項式的二項式系數及展開式中有理項系數的確定,基礎題.7、A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數的圖象與性質.【名師點睛】三角函數圖象變換方法:8、D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質,利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.9、D【解析】
將多項式的乘法式展開,結合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數的求法,屬于基礎題.10、B【解析】
由題中垂直關系,可得漸近線的方程,結合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數學運算的能力,屬于中檔題.11、B【解析】
分兩類:一類是醫院A只分配1人,另一類是醫院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫院A的情況分兩類:第一類:若醫院A只分配1人,則乙必在醫院B,當醫院B只有1人,則共有種不同分配方案,當醫院B有2人,則共有種不同分配方案,所以當醫院A只分配1人時,共有種不同分配方案;第二類:若醫院A分配2人,當乙在醫院A時,共有種不同分配方案,當乙不在A醫院,在B醫院時,共有種不同分配方案,所以當醫院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.12、C【解析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
根據題意,畫出圖像,數形結合,將目標轉化為求動直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區域如圖陰影區域所示,令,則.分析知,當,時,取得最小值,且.【點睛】本題考查線性規劃問題,屬于基礎題14、.【解析】試題分析:∵,,成等差數列,∴,又∵等比數列,∴.考點:等差數列與等比數列的性質.【名師點睛】本題主要考查等差與等比數列的性質,屬于容易題,在解題過程中,需要建立關于等比數列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.15、【解析】
設所在直線方程為設?點坐標分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設所在直線方程為設?點坐標分別為,,都在上,故兩式相減,可得(因為是的中點),即聯立直線與的方程:又,即,即又因為,則有即∴.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關系、弦長公式,考查了學生的計算能力,綜合性比較強,屬于中檔題.16、【解析】
數列滿足知,數列以3為公比的等比數列,再由已知結合等比數列的性質求得的值即可.【詳解】,數列是以3為公比的等比數列,又,,.故答案為:.【點睛】本題考查了等比數列定義,考查了對數的運算性質,考查了等比數列的通項公式,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)求出導函數,由在上恒成立,采用分離參數法求解;(2)觀察函數,不等式湊配后知,利用時可證結論.【詳解】(1)因為在上單調遞減,所以,即在上恒成立因為在上是單調遞減的,所以,所以(2)因為,所以由(1)知,當時,在上單調遞減所以即所以.【點睛】本題考查用導數研究函數的單調性,考查用導數證明不等式.解題關鍵是把不等式與函數的結論聯系起來,利用函數的特例得出不等式的證明.18、(1);(2).【解析】試題分析:(1)當時;(2)由等價于,解之得.試題解析:(1)當時,.解不等式,得.因此,的解集為.(2)當時,,當時等號成立,所以當時,等價于.①當時,①等價于,無解.當時,①等價于,解得.所以的取值范圍是.考點:不等式選講.19、(1);(2)或【解析】
(1)由橢圓的定義可知,焦點三角形的周長為,從而求出.寫出直線的方程,與橢圓方程聯立,根據交點橫坐標為,求出和,從而寫出橢圓的方程;(2)設出P、Q兩點坐標,由可知點為的重心,根據重心坐標公式可將點用P、Q兩點坐標來表示.由點在圓O上,知點M的坐標滿足圓O的方程,得式.為直線l與橢圓的兩個交點,用韋達定理表示,將其代入方程,再利用求得的范圍,最終求出實數的取值范圍.【詳解】解:(1)由題意知.,直線的方程為∵直線與橢圓的另一個交點的橫坐標為解得或(舍去),∴橢圓的方程為(2)設.∴點為的重心,∵點在圓上,由得,代入方程,得,即由得解得.或【點睛】本題考查了橢圓的焦點三角形的周長,標準方程的求解,直線與橢圓的位置關系,其中重心坐標公式、韋達定理的應用是關鍵.考查了學生的運算能力,屬于較難的題.20、(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調遞減,,.∴在存在一個零點.綜上,的零點個數為1..【點睛】本題考查了利用導數解決函數零點問題,考查了分類討論思想
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論