




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
HighdynamicrangeimagingDigitalVisualEffectsYung-YuChuangwithslidesbyFredoDurand,BrianCurless,SteveSeitz,PaulDebevecandAlexeiEfrosCameraisanimperfectdeviceCameraisanimperfectdeviceformeasuringtheradiancedistributionofascenebecauseitcannotcapturethefullspectralcontentanddynamicrange.Limitationsinsensordesignpreventcamerasfromcapturingallinformationpassedbylens.CamerapipelinelenssensorshutterAssumeastaticscene,Thus,Lisnotafunctionoftime.Camerapipeline12bits8bitsReal-worldresponsefunctionsIngeneral,theresponsefunctionisnotprovidedbycameramakerswhoconsideritpartoftheirproprietaryproductdifferentiation.Inaddition,theyarebeyondthestandardgammacurves.Theworldishighdynamicrange11,50025,000400,0002,000,000,000TheworldishighdynamicrangeRealworlddynamicrangeEyecanadaptfrom~10-6to106cd/m2Often1:100,000inasceneTypical1:50,max1:500forpictures10-6106RealworldHighdynamicrangespotmeterShortexposure10-610610-6106RealworldradiancePictureintensitydynamicrangePixelvalue0to255Longexposure10-610610-6106RealworldradiancePictureintensitydynamicrangePixelvalue0to255CameraisnotaphotometerLimiteddynamicrangePerhapsusemultipleexposures?Unknown,nonlinearresponse
NotpossibletoconvertpixelvaluestoradianceSolution:Recoverresponsecurvefrommultipleexposures,thenreconstructtheradiancemapVaryingexposureWaystochangeexposureShutterspeedApertureNeutraldensityfiltersShutterspeedNote:shuttertimesusuallyobeyapowerseries–each“stop”isafactorof2?,1/8,1/15,1/30,1/60,1/125,1/250,1/500,1/1000secUsuallyreallyis:?,1/8,1/16,1/32,1/64,1/128,1/256,1/512,1/1024secVaryingshutterspeedsHDRIcapturingfrommultipleexposuresCaptureimageswithmultipleexposuresImagealignment(evenifyouusetripod,itissuggestedtorunalignment)ResponsecurverecoveryGhost/flareremovalImagealignmentWewillintroduceafastandeasy-to-implementmethodforthistask,calledMedianThresholdBitmap(MTB)alignmenttechnique.Consideronlyintegraltranslations.Itisenoughempirically.TheinputsareNgrayscaleimages.(YoucaneitherusethegreenchannelorconvertintograyscalebyY=(54R+183G+19B)/256)MTBisabinaryimageformedbythresholdingtheinputimageusingthemedianofintensities.WhyisMTBbetterthangradient?Edge-detectionfiltersaredependentonimageexposuresTakingthedifferenceoftwoedgebitmapswouldnotgiveagoodindicationofwheretheedgesaremisaligned.SearchfortheoptimaloffsetTryallpossibleoffsets.GradientdescentMultiscaletechniquelog(max_offset)levelsTry9possibilitiesforthetoplevelScaleby2whenpassingdown;tryits9neighborsThresholdnoiseignorepixelsthatareclosetothethresholdexclusionbitmapEfficiencyconsiderationsXORfortakingdifferenceANDwithexclusionmapsBitcountingbytablelookupResultsSuccessrate=84%.10%failureduetorotation.3%forexcessivemotionand3%fortoomuchhigh-frequencycontent.Recoveringresponsecurve12bits8bitsRecoveringresponsecurveWewanttoobtaintheinverseoftheresponsecurve0255Dt=
1/4secDt=
1secDt=
1/8secDt=
2secImageseriesDt=
1/2secRecoveringresponsecurve?1?1?1?1?1?3?3?3?3?3?2?2?2?2?20255Dt=
1/4secDt=
1secDt=
1/8secDt=
2secImageseriesDt=
1/2secRecoveringresponsecurve?1?1?1?1?1?3?3?3?3?3?2?2?2?2?2Xij=lnXijIdeabehindthemathln2IdeabehindthemathEachlineforascenepoint.TheoffsetisessentiallydeterminedbytheunknownEiIdeabehindthemathNotethatthereisashiftthatwecan’trecoverBasicideaDesignanobjectivefunctionOptimizeitMathforrecoveringresponsecurveRecoveringresponsecurveThesolutioncanbeonlyuptoascale,addaconstraintAddahatweightingfunctionRecoveringresponsecurveWewantIfP=11,N~25(typically50isused)Wepreferthatselectedpixelsarewelldistributedandsampledfromconstantregions.Theypickedpointsbyhand.ItisanoverdeterminedsystemoflinearequationsandcanbesolvedusingSVDHowtooptimize?1.SetpartialderivativestozeroHowtooptimize?Setpartialderivativestozero
SparselinearsystemAx=b256nn×p1254g(0)g(255)lnE1lnEn:::QuestionsWillg(127)=0alwaysbesatisfied?Whyorwhynot?Howtofindtheleast-squaresolutionforanover-determinedsystem?Least-squaresolutionforalinearsystemTheyareoftenmutuallyincompatible.Weinsteadfindxtominimizethenormoftheresidualvector.Iftherearemultiplesolutions,weprefertheonewiththeminimallength.Least-squaresolutionforalinearsystemIfweperformSVDonAandrewriteitasthenistheleast-squaresolution.pseudoinverseProofProofLibrariesforSVDMatlabGSLBoostLAPACKATLASMatlabcodeMatlabcodefunction[g,lE]=gsolve(Z,B,l,w)n=256;A=zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));b=zeros(size(A,1),1);k=1;%%Includethedata-fittingequationsfori=1:size(Z,1)forj=1:size(Z,2)wij=w(Z(i,j)+1);A(k,Z(i,j)+1)=wij;A(k,n+i)=-wij;b(k,1)=wij*B(i,j);k=k+1;endendA(k,129)=1;%%Fixthecurvebysettingitsmiddlevalueto0k=k+1;fori=1:n-2%%IncludethesmoothnessequationsA(k,i)=l*w(i+1);A(k,i+1)=-2*l*w(i+1);A(k,i+2)=l*w(i+1);k=k+1;endx=A\b;%%SolvethesystemusingSVDg=x(1:n);lE=x(n+1:size(x,1));RecoveredresponsefunctionConstructingHDRradiancemapcombinepixelstoreducenoiseandobtainamorereliableestimationReconstructedradiancemapWhatisthisfor?HumanperceptionVision/graphicsapplications
AutomaticghostremovalbeforeafterWeightedvarianceMovingobjectsandhigh-contrastedgesrenderhighvariance.RegionmaskingThresholding;dilation;identifyregions;BestexposureineachregionLensflareremovalbeforeafterEasierHDRreconstructionrawimage=12-bitCCDsnapshot
EasierHDRreconstructionXij=Ei*Δtj
Exposure(X)Δt12bytesperpixel,4foreachchannelsignexponentmantissaPF7685121<binaryimagedata>FloatingPointTIFFsimilarTextheadersimilartoJeffPoskanzer’s.ppm
imageformat:PortablefloatMap(.pfm)(145,215,87,149)=(145,215,87)*2^(149-128)=(1190000,1760000,713000)(145,215,87,103)=(145,215,87)*2^(103-128)=(0.00000432,0.00000641,0.00000259)Ward,Greg."RealPixels,"inGraphicsGemsIV,editedbyJamesArvo,AcademicPress,1994Radianceformat(.pic,.hdr,.rad)RedGreenBlueExponent32bits/pixelILM’sOpenEXR(.exr)6bytesperpixel,2foreachchannel,compressedsignexponentmantissa
Severallosslesscompressionoptions,2:1typicalCompatiblewiththe“half”datatypeinNVidia'sCgSupportednativelyonGeForceFXandQuadroFX
Availableat/RadiometricselfcalibrationAssumethatanyresponsefunctioncanbemodeledasahigh-orderpolynomialNoneedtoknowexposuretimeinadvance.UsefulforcheapcamerasZXMitsunagaandNayarTofindthecoefficientscmtominimizethefollowingAguessfortheratioof
MitsunagaandNayarAgain,wecanonlysolveuptoascale.Thus,addaconstraintf(1)=1.ItreducestoM-1variables.Howtosolveit?MitsunagaandNayarWesolvetheaboveiterativelyandupdatetheexposureratioaccordinglyHowtodetermineM?SolveuptoM=10andpickuptheonewiththeminimalerror.Noticethatyouprefertohavethesameorderforallchannels.Usethecombinederror.Robertsonet.al.Givenand,thegoalistofindbothandMaximumlikelihoodRobertsonet.al.repeatassumingisknown,optimizeforassumingisknown,optimizeforuntilconvergeRobertsonet.al.repeatassumingisknown,optimizeforassumingisknown,optimizeforuntilconvergeRobertsonet.al.repeatassumingisknown,optimizeforassumingisknown,optimizeforuntilconvergeRobertsonet.al.repeatassumingisknown,optimizeforassumingisknown,optimizeforuntilconvergenormalizesothatSpaceofresponsecurvesSpaceofresponsecurvesPatch-BasedHDRHDRVideoHighDynamicRangeVideo
SingBingKang,MatthewUyttendaele,SimonWinder,RichardSzeliskiSIGGRAPH2003
videoAssortedpixelAssortedpixelAssortedpixelAVersatileHDRVideoSystem
videoAVersatileHDRVideoSystemHDRbecomescommonpracticeManycamerashasbracketexposuremodesiPhone4hasHDRoption,butitismoreexposure
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機關內部培訓活動方案
- 晚宴拓展活動方案
- 朗誦藝術活動方案
- 林肯走秀活動活動方案
- 林業科技報務年活動方案
- 村級載體活動方案
- 服裝線下展示活動方案
- 服裝免洗活動方案
- 春節玩具活動方案
- 期末匯報課活動方案
- 數據中心運維服務投標方案(技術標)
- 2023-2024學年人教版數學八年級下冊期末復習試卷(含答案)
- 2024年租賃業務操作手冊3篇
- 中國經皮冠狀動脈介入治療指南(全文版)
- 2025年山東鐵投集團招聘筆試參考題庫含答案解析
- 我的植物朋友向日葵400字
- 《化工園區有毒有害氣體環境預警體系技術規范》
- 土方車隊運輸居間合同范文
- EHS工程師招聘面試題與參考回答(某大型央企)2025年
- 醫院培訓課件:《外科手術部位感染預防與控制》
- 2023年題工會基礎知識試題及答案
評論
0/150
提交評論