




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣西玉林市博白縣數學高二上期末聯考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知關于的不等式的解集是,則的值是()A. B.5C. D.72.已知梯形中,,且,則的值為()A. B.C. D.3.已知雙曲線的左、右焦點分別為,,為坐標原點,為雙曲線在第一象限上的點,直線,分別交雙曲線的左,右支于另一點,,若,且,則雙曲線的離心率為()A. B.3C.2 D.4.函數的值域為()A. B.C. D.5.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.6.從裝有2個紅球和2個白球的口袋內任取兩個球,則下列選項中的兩個事件為互斥事件的是()A.至多有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;都是紅球 D.至多有1個白球;至多有1個紅球7.在等差數列中,,則()A.6 B.3C.2 D.18.已知命題:若直線的方向向量與平面的法向量垂直,則;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.9.年底以來,我國多次在重要場合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負抵消,實現二氧化碳“零排放”.二氧化碳的分子是由一個碳原子和兩個氧原子構成的,其結構式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構成的不同二氧化碳分子共有()A.種 B.種C.種 D.種10.雙曲線:的漸近線與圓:在第一、二象限分別交于點、,若點滿足(其中為坐標原點),則雙曲線的離心率為()A. B.C. D.11.命題“若,都是偶數,則也是偶數”的逆否命題是A.若是偶數,則與不都是偶數B.若是偶數,則與都不是偶數C.若不是偶數,則與不都是偶數D.若不是偶數,則與都不是偶數12.若直線的一個方向向量為,直線的一個方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°二、填空題:本題共4小題,每小題5分,共20分。13.已知數列中,,且數列為等差數列,則_____________.14.已知雙曲線:的左、右焦點分別為,,為的右支上一點,且,則的離心率為___________.15.曲線在點處的切線方程為__________16.橢圓C:的左、右焦點分別為,,點A在橢圓上,,直線交橢圓于點B,,則橢圓的離心率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公比的等比數列和等差數列滿足:,,其中,且是和的等比中項(1)求數列與的通項公式;(2)記數列的前項和為,若當時,等式恒成立,求實數的取值范圍18.(12分)為慶祝中國共產黨成立100周年,某校舉行了黨史知識競賽,在必答題環節,甲、乙兩位選手分別從3道選擇題(1)甲至少抽到1道填空題(2)甲答對的題數比乙多的概率.19.(12分)如圖,在正方體中,,分別為棱,的中點(1)求證:直線平面;(2)求異面直線與所成角的余弦值20.(12分)已知拋物線的焦點為F,點在拋物線上.(1)求拋物線的標準方程;(2)過點的直線交拋物錢C于A,B兩點,O為坐標原點,記直線OA,OB的斜率分別,,求證:為定值.21.(12分)森林資源是全人類共有的寶貴財富,其在改善環境,保護生態可持續發展方面發揮著重要的作用.2020年12月12日,主席在全球氣候峰會上通過視頻發表題為《繼往開來,開啟全球應對氣候變化的新征程》的重要講話,宣布“到2030年,我國森林蓄積量將比2005年增加60億立方米”.為了實現這一目標,某地林業管理部門著手制定本地的森林蓄積量規劃.經統計,本地2020年底的森林蓄積量為120萬立方米,森林每年以25%的增長率自然生長,而為了保證森林通風和發展經濟的需要,每年冬天都要砍伐掉萬立方米的森林.設為自2021年開始,第年末的森林蓄積量.(1)請寫出一個遞推公式,表示二間的關系;(2)將(1)中的遞推公式表示成的形式,其中,為常數;(3)為了實現本地森林蓄積量到2030年底翻兩番的目標,每年的砍伐量最大為多少萬立方米?(精確到1萬立方米)(可能用到的數據:,,)22.(10分)已知橢圓C經過,兩點(1)求橢圓C的標準方程;(2)直線l與C交于P,Q兩點,M是PQ的中點,O是坐標原點,,求證:的邊PQ上的高為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意可得的根為,然后利用根與系數的關系列方程組可求得結果【詳解】因為關于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D2、D【解析】根據共線定理、平面向量的加法和減法法則,即可求得,進而求出的值,即可求出結果.【詳解】因為,所以又,所以.故選:D.3、D【解析】由雙曲線的定義可設,,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結合雙曲線性質可以得到,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故,對三角形,用余弦定理,得到,結合,可得,,,代入上式子中,得到,即,結合離心率滿足,即可得出,故選:D【點睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質即可,屬于常考題型.4、C【解析】根據基本不等式即可求出【詳解】因為,當且僅當時取等號,所以函數的值域為故選:C5、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A6、C【解析】根據試驗過程進行分析,利用互斥事件的定義對四個選項一一判斷即可.【詳解】對于A:“至多有1個白球”包含都是紅球和一紅一白,“都是紅球”包含都是紅球,所以“至多有1個白球”與“都是紅球”不是互斥事件.故A錯誤;對于B:“至少有1個白球”包含都是白球和一紅一白,“至少有1個紅球”包含都是紅球和一紅一白,所以“至少有1個白球”與“至少有1個紅球”不是互斥事件.故B錯誤;對于C:“恰好有1個白球”包含一紅一白,“都是紅球”包含都是紅球,所以“恰好有1個白球”與“都是紅球”是互斥事件.故C錯誤;對于D:“至多有1個紅球”包含都是白球和一紅一白,“至多有1個白球”包含都是紅球和一紅一白,所以“至多有1個白球”與“至多有1個紅球”不是互斥事件.故D錯誤.故選:C7、B【解析】根據等差數列下標性質進行求解即可.【詳解】因為是等差數列,所以,故選:B8、D【解析】先判斷出p、q的真假,再分別判斷四個選項的真假.【詳解】因為“若直線的方向向量與平面的法向量垂直,則或”,所以p為假命題;對于等軸雙曲線,,所以離心率為,所以q為真命題.所以假命題,故A錯誤;為假命題,故B錯誤;為假命題,故C錯誤;為真命題,故D正確.故選:D9、C【解析】分兩種情況討論:兩個氧原子相同、兩個氧原子不同,分別計算出兩種情況下二氧化碳分子的個數,利用分類加法計數原理可得結果.【詳解】分以下兩種情況討論:若兩個氧原子相同,此時二氧化碳分子共有種;若兩個氧原子不同,此時二氧化碳分子共有種.由分類加法計數原理可知,由上述同位素可構成的不同二氧化碳分子共有種.故選:C.10、B【解析】由,得點為三角形的重心,可得,即可求解.【詳解】如圖:設雙曲線的焦距為,與軸交于點,由題可知,則,由,得點為三角形的重心,可得,即,,即,解得.故選:B【點睛】本題主要考查了雙曲線的簡單幾何性質,三角形的重心的向量表示,屬于中檔題.11、C【解析】命題的逆否命題是將條件和結論對換后分別否定,因此“若都是偶數,則也是偶數”的逆否命題是若不是偶數,則與不都是偶數考點:四種命題12、C【解析】直接由公式,計算兩直線的方向向量的夾角,進而得出直線與所成角的大小【詳解】因為,,所以,所以,所以直線與所成角的大小為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得:考點:等差數列通項14、【解析】由雙曲線定義可得a,代入點P坐標可得b,然后可解.【詳解】由題知,故,又點在雙曲線上,所以,解得,所以.故答案為:15、【解析】先驗證點在曲線上,再求導,代入切線方程公式即可【詳解】由題,當時,,故點在曲線上求導得:,所以故切線方程為故答案為:16、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設出邊長,找到邊長與之間等量關系,然后把等量關系帶入到勾股定理表達的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設,則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)根據已知條件可得出關于方程,解出的值,可求得的值,即可得出數列與的通項公式;(2)求得,利用錯位相減法可求得,分析可知數列為單調遞增數列,對分奇數和偶數兩種情況討論,結合參變量分離法可得出實數的取值范圍.【詳解】(1)設等差數列的公差為,因為,,,且是和的等比中項,所以,整理可得,解得或.若,則,可得,不合乎題意;若,則,可得,合乎題意.所以,;;(2)因為,①,②②①得因為,即對恒成立,所以當且,,故數列為單調遞增數列,當為偶數時,,所以;當為奇數時,,所以,即.綜上可得18、(1);(2).【解析】(1)把3道選擇題(2)設,分別表示甲答對1道題,2道題的事件,,分別表示乙答對0道題,1道題的事件,分別求出它們的概率,甲答對的題數比乙多這個事件是,然后由相互獨立的事件和互斥事件的概率公式計算【詳解】解:(1)記3道選擇題則試驗的樣本空間,.共有10個樣本點,且每個樣本點是等可能發生的,所以這是一個古典概型.記事件A=“甲至少抽到1道填空題,.所以,,.所以,.因此,甲至少抽到1道填空題(2)設,分別表示甲答對1道題,2道題的事件,分別表示乙答對0道題,1道題的事件,根據獨立性假定,得,.,.記事件B=“甲答對的題數比乙多”,則,且,,兩兩互斥,與,與,與分別相互獨立,所以..因此,甲答對的題數比乙多的概率為.19、(1)證明見解析;(2).【解析】(1)證明,則,可證明,由平面,可得,再由線面垂直的判定定理即可求證;(2)連結,可知,所以或其補角即為異面直線與所成的角,在中由余弦定理計算的值即可求解.【小問1詳解】在正方形中,,分別為棱,的中點,則,,,所以,則,所以,即,又因為平面,面,所以,因為,所以平面【小問2詳解】連結,,可知,所以或其補角即為異面直線與所成的角,令,則,,,在中,由余弦定理可得:,故異面直線與所成角的余弦值為.20、(1)(2)證明見解析【解析】(1)將點代入拋物線方程即可求解;(2)當直線AB的斜率存在時,設直線AB的方程為,,將直線方程與拋物線方程聯立利用韋達定理即可求出的值;當直線AB的斜率不存在時,由過點即可求出點和點的坐標,即可求出的值.【小問1詳解】將點代入得,,∴拋物線的標準方程為.【小問2詳解】當直線AB斜率存在時,設直線AB的方程為,,將聯立得,,由韋達定理得:,,,當直線AB的斜率不存在時,由直線過點,則,,,,綜上所述可知,為定值為.21、(1);(2).;(3)19萬立方米.【解析】(1)由題意得到;(2)若遞推公式寫成,則,再與遞推公式比較系數;(3)若實現翻兩番的目標,則,根據遞推公式,計算的最大值.【詳解】解:(1)由題意,得,并且.①(2)將化成,②比較①②的系數,得解得所以(1)中的遞推公式可以化為.(3)因為,且,所以,由(2)可知,所以,即數列是以為首項,為公比的等比數列,其通項公式:,所以.到2030年底的森林蓄積量為該數列的第10項,即.由題意,森林蓄積量到2030年底要達到翻兩番的目標,所以,即.即.解得.所以每年的砍伐量最大為19萬立方米.【點睛】方法點睛:遞推公式求通項公式,有以下幾種方法:
型如:的數列的遞推公式,采用累加法求通項;
形如:的數列的遞推公式,采用累乘法求通項;
形如:的遞推公式,通過構造轉化為,構造數列是以為首項,為公比的等比數列,
形如:的遞推公式,兩邊同時除以,轉化為的形式求通項公式;
形如:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年終創意活動方案
- 年初敬老活動方案
- 幼兒室外活動活動方案
- 幼兒園動物公益活動方案
- 廉政家風活動方案
- 年節鍋具促銷活動方案
- 幼兒超市禮貌活動方案
- 幼兒園運營活動方案
- 幼兒園活動策劃活動方案
- 幸福之路活動方案
- 電大《中國現代文學專題》期末復習題及答案
- 潘祖仁版高分子化學(第五版)課后習題答案.24401
- 吉林省房屋修繕及抗震加固工程計價定額說明
- 投標密封條格式大全
- (2023)國庫知識競賽題庫(含答案)
- 2023年北京理工附中小升初英語分班考試復習題
- GB/T 12206-2006城鎮燃氣熱值和相對密度測定方法
- FZ/T 12001-2006氣流紡棉本色紗
- 論湖湘傳統文化與大學生思政教育之間的融合優秀獲獎科研論文-1
- 提高成材率小組材料全套ppt
- 奧林匹克精神
評論
0/150
提交評論