




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆上海市上海外國語附屬外國語學校數學高三上期末綜合測試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(,且)在區間上的值域為,則()A. B. C.或 D.或42.閱讀名著,品味人生,是中華民族的優良傳統.學生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種3.將函數圖象上所有點向左平移個單位長度后得到函數的圖象,如果在區間上單調遞減,那么實數的最大值為()A. B. C. D.4.已知集合,則全集則下列結論正確的是()A. B. C. D.5.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.6.已知f(x),g(x)都是偶函數,且在[0,+∞)上單調遞增,設函數F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)7.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.8.2019年末,武漢出現新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區,傳播速度很快.因這種病毒是以前從未在人體中發現的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發熱患者和與確診患者的密切接觸者等“四類”人員,強化網格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則()A. B. C. D.9.已知函數(,是常數,其中且)的大致圖象如圖所示,下列關于,的表述正確的是()A., B.,C., D.,10.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數條直線與平行 B.且C.且 D.內的任何直線都與平行11.已知集合,,若,則()A. B. C. D.12.設,,,則、、的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,己知半圓的直徑,點是弦(包含端點,)上的動點,點在弧上.若是等邊三角形,且滿足,則的最小值為___________.14.已知i為虛數單位,復數,則=_______.15.已知,則展開式中的系數為__16.函數在區間內有且僅有兩個零點,則實數的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,設,過點的直線與圓相切,且與拋物線相交于兩點.(1)當在區間上變動時,求中點的軌跡;(2)設拋物線焦點為,求的周長(用表示),并寫出時該周長的具體取值.18.(12分)近年來,隨著“霧霾”天出現的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調查中,共調查了人,其中女性人,男性人,并根據統計數據畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關系并說明理由;(2)根據統計數據建立一個列聯表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關系.附:19.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.20.(12分)等差數列的前項和為,已知,.(1)求數列的通項公式;(2)設數列{}的前項和為,求使成立的的最小值.21.(12分)為調研高中生的作文水平.在某市普通高中的某次聯考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規定分數在50以上(含50)的作文被評為“優秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.(1)求的值;(2)填寫下面列聯表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優秀作文”與“學生的文理科”有關?文科生理科生合計獲獎6不獲獎合計400(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優秀作文”的學生人數為,求的分布列及數學期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設,,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
對a進行分類討論,結合指數函數的單調性及值域求解.【詳解】分析知,.討論:當時,,所以,,所以;當時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數函數的值域問題,指數函數的值域一般是利用單調性求解,側重考查數學運算和數學抽象的核心素養.2、B【解析】
首先將五天進行分組,再對名著進行分配,根據分步乘法計數原理求得結果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數原理的應用,易錯點是忽略分組中涉及到的平均分組問題.3、B【解析】
根據條件先求出的解析式,結合三角函數的單調性進行求解即可.【詳解】將函數圖象上所有點向左平移個單位長度后得到函數的圖象,則,設,則當時,,,即,要使在區間上單調遞減,則得,得,即實數的最大值為,故選:B.【點睛】本小題主要考查三角函數圖象變換,考查根據三角函數的單調性求參數,屬于中檔題.4、D【解析】
化簡集合,根據對數函數的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.5、C【解析】
根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.6、A【解析】試題分析:由題意得,F(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數的性質;2.分類討論的數學思想.【思路點睛】本題在在解題過程中抓住偶函數的性質,避免了由于單調性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優化,另外,不要忘記定義域,如果要研究奇函數或者偶函數的值域、最值、單調性等問題,通常先在原點一側的區間(對奇(偶)函數而言)或某一周期內(對周期函數而言)考慮,然后推廣到整個定義域上.7、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).8、A【解析】
根據題意分別求出事件A:檢測5個人確定為“感染高危戶”發生的概率和事件B:檢測6個人確定為“感染高危戶”發生的概率,即可得出的表達式,再根據基本不等式即可求出.【詳解】設事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設,則∴當且僅當即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發生的概率公式的應用,互斥事件概率加法公式的應用,以及基本不等式的應用,解題關鍵是對題意的理解和事件的分解,意在考查學生的數學運算能力和數學建模能力,屬于較難題.9、D【解析】
根據指數函數的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設中提供的圖像可以看出,故得,故選:D.【點睛】本題考查圖象的平移以及指數函數的圖象和特征,本題屬于基礎題.10、B【解析】
根據充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.11、A【解析】
由,得,代入集合B即可得.【詳解】,,,即:,故選:A【點睛】本題考查了集合交集的含義,也考查了元素與集合的關系,屬于基礎題.12、D【解析】
因為,,所以且在上單調遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數函數的單調性比較指對數的大小,難度一般.除了可以直接利用單調性比較大小,還可以根據中間值“”比較大小.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
建系,設,表示出點坐標,則,根據的范圍得出答案.【詳解】解:以為原點建立平面坐標系如圖所示:則,,,,設,則,,,,,,,顯然當取得最大值4時,取得最小值1.故答案為:1.【點睛】本題考查了平面向量的數量積運算,坐標運算,屬于中檔題.14、【解析】
先把復數進行化簡,然后利用求模公式可得結果.【詳解】.故答案為:.【點睛】本題主要考查復數模的求解,利用復數的運算把復數化為的形式是求解的關鍵,側重考查數學運算的核心素養.15、1.【解析】
由題意求定積分得到的值,再根據乘方的意義,排列組合數的計算公式,求出展開式中的系數.【詳解】∵已知,則,
它表示4個因式的乘積.
故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.
故展開式中的系數.
故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數的計算公式,屬于中檔題.16、【解析】
對函數零點問題等價轉化,分離參數討論交點個數,數形結合求解.【詳解】由題:函數在區間內有且僅有兩個零點,,等價于函數恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數零點問題,根據函數零點個數求參數的取值范圍,關鍵在于對函數零點問題恰當變形,等價轉化,數形結合求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)的周長為,時,的周長為【解析】
(1)設的方程為,根據題意由點到直線的距離公式可得,將直線方程與拋物線方程聯立可得,設?坐標分別是?,利用韋達定理以及中點坐標公式消參即可求解.(2)根據拋物線的定義可得,由(1)可得,再利用弦長公式即可求解.【詳解】(1)設的方程為于是聯立設?坐標分別是?則設的中點坐標為,則消去參數得:(2)設,,由拋物線定義知,,∴由(1)知∴,,的周長為時,的周長為【點睛】本題考查了動點的軌跡方程、直線與拋物線的位置關系、拋物線的定義、弦長公式,考查了計算能力,屬于中檔題.18、(1)圖形見解析,理由見解析;(2)見解析;(3)犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩有關系【解析】
(1)利用等高條形圖中兩個深顏色條的高比較得出性別與霧霾天外出戴口罩有關系;(2)填寫列聯表即可;(3)由表中數據,計算觀測值,對照臨界值得出結論.【詳解】解:(1)在等高條形圖中,兩個深色條的高分別表示女性和男性中霧霾天外出戴口罩的頻率,比較圖中兩個深色條的高可以發現,女性中霧霾天外出帶口罩的頻率明顯高于男性中霧霾天外出帶口罩的頻率,因此可以認為性別與霧霾天外出帶口罩有關系.(2)列聯表如下:戴口罩不戴口罩合計女性男性合計(3)由(2)中數據可得:.所以,在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩有關系.【點睛】本題考查了列聯表與獨立性檢驗的應用問題,也考查了登高條形圖的應用問題,屬于基礎題.19、(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點,再根據面可得進而根據中位線定理可得結果;(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系,求出面的一個法向量,用表示面的一個法向量,由可得結果.試題解析:(1)證明:連交于,連是矩形,是中點.又面,且是面與面的交線,是的中點.(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系(如圖),則各點坐標為.設存在滿足要求,且,則由得:,面的一個法向量為,面的一個法向量為,由,得,解得,故存在,使二面角為直角,此時.20、(1);(2)的最小值為19.【解析】
(1)根據條件列方程組求出首項、公差,即可寫出等差數列的通項公式;(2)根據等差數列前n項和化簡,利用裂項相消法求和,解不等式即可求解.【詳解】(1)等差數列的公差設為,,,可得,,解得,,則;(2),,前n項和為,即,可得,即,則的最小值為19.【點睛】本題主要考查了等差數列的通項公式,等差數列的前n項和,裂項相消法求和,屬于中檔題21、(1),,.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優秀作文”與“學生的文理科”有關(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國禮品包裝行業市場發展分析及發展前景與投資策略研究報告
- 2025-2030中國烈酒市場深度調查研究報告
- 項目招商代理合同
- 預付購房房屋買賣合同
- 車輛借用與維修保養費用結算合同范本
- 采購合同培訓與成本控制策略實施
- 科技園區場地租賃合同終止及創新項目支持協議范本
- 旅游景區場推廣服務及門票銷售合同
- 房貸合同編號確認與貸款提前還款協議
- 研發型企業財務代理記賬與知識產權保護成本核算合同
- 2025年公共財政與預算考試試卷及答案
- 2025-2030中國市政工程建設行業市場發展前瞻及投資戰略研究報告
- 2025年客戶體驗管理:存量時代銀行的核心競爭力白皮書-瑞和數智
- 粒子加速器用30-4000 MHz級固態功率源系統 征求意見稿
- SL631水利水電工程單元工程施工質量驗收標準第1部分:土石方工程
- 2025年湖南出版中南傳媒招聘筆試參考題庫含答案解析
- GB/T 44880-2024因果矩陣
- (高清版)TDT 1075-2023 光伏發電站工程項目用地控制指標
- 談談如何做好科研工作課件
- 預制梁場建設驗收標準
- JX820D型便攜式吸引器使用說明書
評論
0/150
提交評論