2025屆湖北省武漢市新洲一中陽邏校區高二上數學期末學業水平測試模擬試題含解析_第1頁
2025屆湖北省武漢市新洲一中陽邏校區高二上數學期末學業水平測試模擬試題含解析_第2頁
2025屆湖北省武漢市新洲一中陽邏校區高二上數學期末學業水平測試模擬試題含解析_第3頁
2025屆湖北省武漢市新洲一中陽邏校區高二上數學期末學業水平測試模擬試題含解析_第4頁
2025屆湖北省武漢市新洲一中陽邏校區高二上數學期末學業水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省武漢市新洲一中陽邏校區高二上數學期末學業水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.52.已知橢圓=1(a>b>0)的右焦點為F,橢圓上的A,B兩點關于原點對稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)3.已知橢圓與雙曲線有共同的焦點,則()A.14 B.9C.4 D.24.瑞士著名數學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點,且其“歐拉線”與圓相切,則:①.圓M上的點到原點的最大距離為②.圓M上存在三個點到直線的距離為③.若點在圓M上,則的最小值是④.若圓M與圓有公共點,則上述結論中正確的有()個A.1 B.2C.3 D.45.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.拋物線的焦點為F,A,B是拋物線上兩點,若,若AB的中點到準線的距離為3,則AF的中點到準線的距離為()A.1 B.2C.3 D.47.不等式的解集為()A. B.C.或 D.或8.數學家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個頂點分別為,,,則的歐拉線方程是()A. B.C. D.9.函數,的最小值為()A.2 B.3C. D.10.方程表示的圖形是A.兩個半圓 B.兩個圓C.圓 D.半圓11.已知向量,,則向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)12.設拋物線C:的焦點為,準線為.是拋物線C上異于的一點,過作于,則線段的垂直平分線()A.經過點 B.經過點C.平行于直線 D.垂直于直線二、填空題:本題共4小題,每小題5分,共20分。13.點到拋物線上的點的距離的最小值為________.14.已知離心率為,且對稱軸都在坐標軸上的雙曲線C過點,過雙曲線C上任意一點P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點O為坐標原點,則四邊形OAPB的面積為______15.直線與直線平行,則m的值是__________16.設拋物線的焦點為,直線過焦點,且與拋物線交于兩點,,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題實數滿足成立,命題方程表示焦點在軸上的橢圓,若命題為真,命題或為真,求實數的取值范圍18.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.19.(12分)已知拋物線的焦點是橢圓的一個焦點,直線交拋物線E于兩點(1)求E的方程;(2)若以BC為直徑的圓過原點O,求直線l的方程20.(12分)已知圓,直線過定點.(1)若與圓相切,求的方程;(2)若與圓相交于兩點,且,求此時直線的方程.21.(12分)在等差數列中,,.(1)求的通項公式;(2)求數列的前項和.22.(10分)已知數列與滿足(1)若,且,求數列的通項公式;(2)設的第k項是數列的最小項,即恒成立.求證:的第k項是數列的最小項;(3)設.若存在最大值M與最小值m,且,試求實數的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】作出不等式組對應的可行域,再利用數形結合分析求解.【詳解】解:作出不等式組對應的可行域為如圖所示的陰影部分區域,由得,它表示斜率為縱截距為的直線系,當直線平移到點時,縱截距最大,最大.聯立直線方程得得.所以.故選:C2、B【解析】如圖設橢圓的左焦點為E,根據題意和橢圓的定義可知,利用余弦定理求出,結合平面向量的數量積計算即可.【詳解】由題意知,如圖,設橢圓的左焦點為E,則,因為點A、B關于原點對稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B3、C【解析】根據給定條件結合橢圓、雙曲線方程的特點直接列式計算作答.【詳解】設橢圓半焦距為c,則,而橢圓與雙曲線有共同的焦點,則在雙曲線中,,即有,解得,所以.故選:C4、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點與定點連線的斜率判斷C;由兩個圓有公共點可得圓心距與兩個半徑之間的關系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點坐標為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點的距離為,則圓上的點到原點的最大距離為,故①錯誤;圓心到直線的距離為,圓上存在三個點到直線的距離為,故②正確;的幾何意義:圓上的點與定點連線的斜率,設過與圓相切的直線方程為,即,由,解得,的最小值是,故③錯誤;的圓心坐標,半徑為,圓的的圓心坐標為,半徑為,要使圓與圓有公共點,則圓心距的范圍為,,,解得,故④錯誤故選:A5、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.6、C【解析】結合拋物線的定義求得,由此求得線段的中點到準線的距離【詳解】拋物線方程為,則,由于中點到準線的距離為3,結合拋物線的定義可知,即,所以線段的中點到準線的距離為.故選:C7、A【解析】先將分式不等式轉化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A8、B【解析】根據的三個頂點坐標,先求解出重心的坐標,然后再根據三個點坐標求解任意兩條垂直平分線的方程,聯立方程,即可算出外心的坐標,最后根據重心和外心的坐標使用點斜式寫出直線方程.【詳解】由題意可得的重心為.因為,,所以線段的垂直平分線的方程為.因為,,所以直線的斜率,線段的中點坐標為,則線段的垂直平分線的方程為.聯立,解得,則的外心坐標為,故的歐拉線方程是,即故選:B.9、B【解析】求導函數,分析單調性即可求解最小值【詳解】由,得,當時,,單調遞減;當時,,單調遞增∴當時,取得最小值,且最小值為故選:B.10、D【解析】其中,再兩邊同時平方,由此確定圖形【詳解】根據題意,,再兩邊同時平方,由此確定圖形為半圓.故選:D【點睛】幾何圖像中要注意與方程式是一一對應,故方程的中未知數的的取值范圍對應到圖形中的坐標的取值范圍11、B【解析】根據空間向量線性運算的坐標表示即可得出答案.【詳解】解:因為,,所以.故選:B.12、A【解析】依據題意作出焦點在軸上的開口向右的拋物線,根據垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經過點,即可求解.【詳解】如圖所示:因為線段的垂直平分線上的點到的距離相等,又點在拋物線上,根據定義可知,,所以線段的垂直平分線經過點.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出拋物線上點的坐標,利用兩點間距離公式,配方求出最小值.【詳解】設拋物線上的點坐標,則,當時,取得最小值,且最小值為.故答案為:14、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,可得雙曲線方程為,設,則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,又雙曲線過點,,∴,故雙曲線方程為,∴漸近線方程為,設,則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:215、【解析】利用直線的平行條件即得.詳解】∵直線與直線平行,∴,∴.故答案為:.16、【解析】拋物線焦點為,由于直線和拋物線有兩個交點,故直線斜率存在.根據拋物線的定義可知,故的縱坐標為,橫坐標為.不妨設,故直線的方程為,聯立直線方程和拋物線方程,化簡得,解得,故.所以.【點睛】本小題主要考查直線和拋物線的位置關系,考查拋物線的幾何性質和定義.考查三角形面積公式.在解題過程中,先根據題目所給拋物線的方程求得焦點的坐標,然后利用拋物線的定義:到定點的距離等于到定直線的距離,由此求得點的坐標,進而求得直線的方程,聯立直線方程和拋物線方程求得點的坐標.最后求得面積比.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、或【解析】首先根據復數的乘方及復數模的計算公式求出命題為真時參數的取值范圍,再根據橢圓的性質求出命題為真時參數的取值范圍,依題意為假,為真,即可求出參數的取值范圍;【詳解】解:因為,,,,所以,所以,所以為真時,因為方程表示焦點在軸上的橢圓,所以,所以,即為真時,所以為假時參數的取值范圍為或,因為命題為真,命題或為真,所以為假,為真,或18、(1)證明見解析;(2).【解析】(1)設為中點,連接,根據,證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標系,計算各點坐標,計算平面和平面的法向量,根據向量夾角公式計算得到答案.【詳解】(1)設為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標系,則,,,,,,由,,,即,∴,,,設為平面的法向量,則由,令,得,,∴,設為平面的法向量,則由,令,得,,∴,設二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力,建立空間直角坐標系是解題的關鍵.19、(1);(2).【解析】(1)利用橢圓的焦點與拋物線的焦點相同,列出方程求解即可(2)設,、,,聯立直線與拋物線方程,利用韋達定理,通過,求出,得到直線方程【小問1詳解】由題意知:,,∴的方程是【小問2詳解】設,、,,由題意知,由,得,∴,,,∵以為直徑的圓過點,∴,即,∴,解得,∴直線的方程是20、(1)或;(2)或.【解析】(1)由圓的方程可得圓心和半徑,當直線斜率不存在時,知與圓相切,滿足題意;當直線斜率存在時,利用圓心到直線距離等于半徑可構造方程求得,由此可得方程;(2)當直線斜率不存在時,知與圓相切,不合題意;當直線斜率存在時,利用垂徑定理可構造方程求得,由此可得方程.【小問1詳解】由圓的方程知:圓心,半徑;當直線斜率不存在,即時,與圓相切,滿足題意;當直線斜率存在時,設,即,圓心到直線距離,解得:,,即;綜上所述:直線方程為或;【小問2詳解】當直線斜率不存在,即時,與圓相切,不合題意;當直線斜率存在時,設,即,圓心到直線距離,,解得:或,直線的方程為或.21、(1)(2)【解析】(1)設的公差為,根據題意列出關于和的方程組,求解方程組,再根據等差數列的通項公式,即可求出結果.(2)對數列中項的正負情況進行討論,再結合等差數列的前項和公式,即可求出結果.【小問1詳解】解:設的公差為d,因為,,所以解得故.【小問2詳解】解:設的前項和為,則.當時,,所以所以;當時,.所以.22、(1)(2)證明見解析.(3)【解析】(1)由已知關系得出是等差數列及公差,然后可得通項公式;(2)由已知關系式,利用累加法證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論