




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省泰興市西城中學數學高二上期末統考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數學家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個頂點分別為,,,則的歐拉線方程是()A. B.C. D.2.下列四個命題中,為真命題的是()A.若a>b,則ac2>bc2B.若a>b,c>d,則a﹣c>b﹣dC.若a>|b|,則a2>b2D.若a>b,則3.執行如圖所示的程序框圖,若輸入,則輸出的m的值是()A.-1 B.0C.0.1 D.14.過拋物線的焦點的直線交拋物線于不同的兩點,則的值為A.2 B.1C. D.45.若曲線表示圓,則m的取值范圍是()A. B.C. D.6.命題p:存在一個實數﹐它的絕對值不是正數.則下列結論正確的是()A.:任意實數,它的絕對值是正數,為假命題B.:任意實數,它的絕對值不是正數,為假命題C.:存在一個實數,它的絕對值是正數,為真命題D.:存在一個實數,它的絕對值是負數,為真命題7.雙曲線的焦點到漸近線的距離為()A. B.2C. D.8.設雙曲線:(,)的右頂點為,右焦點為,為雙曲線在第二象限上的點,直線交雙曲線于另一個點(為坐標原點),若直線平分線段,則雙曲線的離心率為()A. B.C. D.9.已知數列滿足,若.則的值是()A. B.C. D.10.已知是橢圓兩個焦點,P在橢圓上,,且當時,的面積最大,則橢圓的標準方程為()A. B.C. D.11.已知為兩條不同的直線,為兩個不同的平面,則下列結論正確的是()A.若,則B.若,則C.若,則D.若,則12.已知等差數列滿足,則其前10項之和為()A.140 B.280C.68 D.56二、填空題:本題共4小題,每小題5分,共20分。13.若兩定點A,B的距離為3,動點M滿足,則M點的軌跡圍成區域的面積為_________14.設,向量,,,且,,則___________.15.已知斜率為1的直線經過橢圓的左焦點,且與橢圓交于,兩點,若橢圓上存在點,使得的重心恰好是坐標原點,則橢圓的離心率______.16.已知橢圓的左、右頂點分別為A,B,橢圓C的左、右焦點分別為F1,F2,點為橢圓C的下頂點,直線MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設點P,Q為橢圓C上位于x軸下方的兩點,且,求四邊形面積的最大值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖甲,平面圖形中,,沿將折起,使點到點的位置,如圖乙,使.(1)求證:平面平面;(2)若點滿足,求點到直線的距離.18.(12分)已知函數,(1)求曲線在點處的切線方程;(2)若對任意的,恒成立,求實數的取值范圍19.(12分)年月日,中國選手楊倩在東京奧運會女子米氣步槍決賽由本得冠軍,為中國代表團攬入本屆奧運會第一枚金牌.受奧運精神的鼓舞,某射擊俱樂部組織名射擊愛好者進行一系列的測試,并記錄他們的射擊得分(單位:分),將所得數據整理得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中的值,并估計該名射擊愛好者的射擊平均得分(求平均值時同一組數據用該組區間的中點值作代表);(2)若采用分層抽樣的方法,從得分高于分的射擊愛好者中隨機抽取人調查射擊技能情況,再從這人中隨機選取人進行射擊訓練,求這人中至少有人的分數高于分的概率.20.(12分)設:函數的定義域為;:不等式對任意的恒成立(1)如果是真命題,求實數的取值范圍;(2)如果“”為真命題,“”為假命題,求實數的取值范圍21.(12分)已知數列的前n項和為,且(1)求證:數列為等比數列;(2)記,求數列的前n項和為22.(10分)已知數列是等差數列,其前項和為,且,.(1)求;(2)記數列的前項和為,求當取得最小值時的的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據的三個頂點坐標,先求解出重心的坐標,然后再根據三個點坐標求解任意兩條垂直平分線的方程,聯立方程,即可算出外心的坐標,最后根據重心和外心的坐標使用點斜式寫出直線方程.【詳解】由題意可得的重心為.因為,,所以線段的垂直平分線的方程為.因為,,所以直線的斜率,線段的中點坐標為,則線段的垂直平分線的方程為.聯立,解得,則的外心坐標為,故的歐拉線方程是,即故選:B.2、C【解析】利用不等式的性質結合特殊值法依次判斷即可【詳解】當c=0時,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1時,,D不成立;由a>|b|知a>0,所以a2>b2,C正確故選:C3、B【解析】計算后,根據判斷框直接判斷即可得解.【詳解】輸入,計算,判斷為否,計算,輸出.故選:B.4、D【解析】本題首先可以通過直線交拋物線于不同的兩點確定直線的斜率存在,然后設出直線方程并與拋物線方程聯立,求出以及的值,然后通過拋物線的定義將化簡,最后得出結果【詳解】因為直線交拋物線于不同的兩點,所以直線的斜率存在,設過拋物線的焦點的直線方程為,由可得,,因為拋物線的準線方程為,所以根據拋物線的定義可知,,所以,綜上所述,故選D【點睛】本題考查了拋物線的相關性質,主要考查了拋物線的定義、過拋物線焦點的直線與拋物線相交的相關性質,考查了計算能力,是中檔題5、C【解析】按照圓的一般方程滿足的條件求解即可.【詳解】或.故選:C.6、A【解析】根據存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數﹐它的絕對值不是正數”為存在量詞命題,其否定為“任意實數,它的絕對值是正數”,因為,所以為假命題;故選:A7、A【解析】根據點到直線距離公式進行求解即可.【詳解】由雙曲線的標準方程可知:,該雙曲線的焦點坐標為:,雙曲線的漸近線方程為:,所以焦點到漸近線的距離為:,故選:A8、A【解析】由給定條件寫出點A,F坐標,設出點B的坐標,求出線段FC的中點坐標,由三點共線列式計算即得.【詳解】令雙曲線的半焦距為c,點,設,由雙曲線對稱性得,線段FC的中點,因直線平分線段,即點D,A,B共線,于是有,即,即,離心率.故選:A9、D【解析】由,轉化為,再由求解.【詳解】因為數列滿足,所以,即,因為,所以,所以,故選:D10、A【解析】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,即可解出【詳解】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,∵時,△F1PF2的面積最大,∴a==,b=∴橢圓的標準方程為故選:A11、D【解析】根據空間里面直線與平面、平面與平面位置關系的相關定理逐項判斷即可.【詳解】A,若,則或異面,故該選項錯誤;B,若,則或相交,故該選項錯誤;C,若,則α,β不一定垂直,故該選項錯誤;D,若,則利用面面垂直的性質可得,故該選項正確.故選:D.12、A【解析】根據等差數列的性質,可得,結合等差數列的求和公式,即可求解.【詳解】由題意,等差數列滿足,根據等差數列的性質,可得,所以數列的前10項和為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立如圖直角坐標系,設點,根據題意和兩點坐標求距離公式可得,結合圓的面積公式計算即可.【詳解】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,如圖,設點,則,由,化簡并整理得:,于是得點M軌跡是以點為圓心,2為半徑的圓,其面積為,所以M點的軌跡圍成區域的面積為.故答案為:14、3【解析】利用向量平行和向量垂直的性質列出方程組,求出,,再由空間向量坐標運算法則求出,由此能求出【詳解】解:設,,向量,,,且,,,解得,,所以,,,故答案為:15、【解析】設點,,坐標分別為,則根據題意有,分別將點,,的坐標代入橢圓方程得,然后聯立直線與橢圓方程,利用韋達定理得到和的值,代入得到關于的齊次式,然后解出離心率.【詳解】設,,坐標分別為,因為的重心恰好是坐標原點,則,則,代入橢圓方程可得,其中,所以……①因為直線的斜率為,且過左焦點,則的方程為:,聯立方程消去可得:,所以,……②所以……③,將②③代入①得,從而.故答案為:【點睛】本題考查橢圓的離心率求解問題,難度較大.解答時,注意,,三點坐標之間的關系,注意韋達定理在解題中的運用.16、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長QF2交橢圓于N點,連接,,設直線,,.直線方程代入橢圓方程,應用韋達定理得,結合不等式的性質、函數的單調性可得的范圍,再計算出四邊形面積得結論【小問1詳解】由題知:,,,又,∴橢圓.【小問2詳解】延長QF2交橢圓于N點,連接,,如下圖所示:,∴設直線,,.由,得,,,.,由勾形函數的單調性得,根據對稱性得:,且,,∴四邊形面積的最大值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)利用給定條件可得平面,再證即可證得平面推理作答.(2)由(1)得EA,EB,EG兩兩垂直,建立空間直角坐標系,先求出向量在向量上的投影的長,然后由勾股定理可得答案.【小問1詳解】因為,則,且,又,平面,因此,平面,即有平面,平面,則,而,則四邊形為等腰梯形,又,則有,于是有,則,即,,平面,因此,平面,而平面,所以平面平面.【小問2詳解】由(1)知,EA,EB,EG兩兩垂直,以點E為原點,射線EA,EB,EG分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,因,四邊形是矩形,則,即,,,由,則則則向量在向量上的投影的長為又,所以點到直線的距離18、(1);(2).【解析】(1)求出函數的導數,計算,,求出切線方程即可;(2)問題轉化為,利用導函數求出的最大值,求出的范圍即可.【小問1詳解】因為,所以,則切線的斜率為,又因為,則切點為,所以曲線在點處的切線方程為,即【小問2詳解】當時,令得,列表得x001↘極小值↗所以當時,的最大值為由題意知,故,解之得,所以實數的取值范圍為.19、(1),平均分為;(2).【解析】(1)利用頻率直方圖中所有矩形面積之和為可求得的值,將每個矩形底邊的中點值乘以對應矩形的面積,將所得結果全部相加可得平均成績;(2)分析可知所抽取的人中,成績在內的有人,分別記為、、、,成績在內的有人,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:根據頻率分布直方圖得到,解得.這組樣本數據平均數為.【小問2詳解】解:根據頻率分布直方圖得到,分數在、內的頻率分別為、,所以采用分層抽樣的方法從樣本中抽取的人,成績在內的有人,分別記為、、、,成績在內的有人,分別記為、,記“人中至少有人的分數高于分”為事件.則所有的基本事件有、、、、、、、、、、、、、、,共種.事件包含的基本事件有、、、、、、、、,共種,所以.20、(1)(2)【解析】(1)由對數函數性質,轉化為對任意的恒成立,結合二次函數的性質,即可求解;(2)利用基本不等式,求得當命題是真命題,得到,結合“”為真命題,“”為假命題,分類討論,即可求解.【小問1詳解】解:因為是真命題,所以對任意的恒成立,當時,不等式,顯然在不能恒成立;當時,則滿足解得,故實數的取值范圍為【小問2詳解】解:因為,所以,當且僅當時,等號成立若是真命題,則;因為“”為真命題,“”為假命題,所以與一真一假當真假時,所以;當假真時,所以,綜上,實數的取值范圍為21、(1)證明見解析;(2).【解析】(1)由已知得,當時,兩式作差整理得,根據等比數列的定義可得證;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫療培訓總結
- 重癥科進修匯報護理
- 提升安全意識教育培訓
- 腫瘤藥師臨床實踐
- 2025屆天津市九校高三下學期聯考歷史試題(含答案)
- 幼兒園小班社會端午節活動教案
- 途牛java開發面試題及答案一年
- 木樁素描試題及答案
- 2025年區熔硅單晶項目立項申請報告
- 詩歌試講面試題及答案
- 荊州中學2024-2025學年高二下學期6月月考歷史試卷
- 2025-2030年中國婚慶產業行業市場現狀供需分析及投資評估規劃分析研究報告
- 2024-2025學年蘇教版四年級下學期期末測試數學試卷(含答案)
- 2025年新高考2卷(新課標Ⅱ卷)英語試卷
- 2025年中考化學必考要點知識歸納
- 三年級語文下冊全冊重點知識點歸納
- 公路養護材料管理制度
- JG/T 330-2011建筑工程用索
- 單位消防培訓課件教學
- 2024年湖北省初中學業水平考試地理試卷含答案
- 2024年認證行業法律法規及認證基礎知識 CCAA年度確認 試題與答案
評論
0/150
提交評論