




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省福州市八縣協作校高二上數學期末經典模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數列滿足,,,則數列的前10項和為()A.60 B.61C.62 D.632.拋物線的焦點為F,點為該拋物線上的動點,點A是拋物線的準線與坐標軸的交點,則的最大值是()A.2 B.C. D.3.已知是邊長為6的等邊所在平面外一點,,當三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.4.當實數,m變化時,的最大值是()A.3 B.4C.5 D.65.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.6.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條7.雙曲線的左頂點為,右焦點,若直線與該雙曲線交于、兩點,為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.8.已知實數,滿足不等式組,若,則的最小值為()A. B.C. D.9.曲線在點處的切線方程是A. B.C. D.10.甲、乙兩名射擊運動員進行比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,則兩人各射擊一次恰有一人中靶的概率為()A.0.26 B.0.28C.0.72 D.0.9811.已知直線過點,,則該直線的傾斜角是()A. B.C. D.12.下列說法正確的個數有()(ⅰ)命題“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個 B.2個C.3個 D.4個二、填空題:本題共4小題,每小題5分,共20分。13.銀行一年定期的存款的利率為p,如果將a元存入銀行一年定期,到期后將本利再存一年定期,到期后再存一年定期……,則10年后到期本利共________元14.若圓錐的軸截面是頂角為的等腰三角形,且圓錐的側面積為,則該圓錐的體積為______.15.在等比數列中,若,是方程兩根,則________.16.設實數、滿足約束條件,則的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.18.(12分)雙曲線,離心率,虛軸長為2(1)求雙曲線的標準方程;(2)經過點的直線與雙曲線相交于兩點,且為的中點,求直線的方程19.(12分)如圖,在正方體中,分別為,的中點(1)求證:平面平面;(2)求平面與平面所成銳二面角的余弦值20.(12分)在等差數列中,,前10項和(1)求列的通項公式;(2)若數列是首項為1,公比為2的等比數列,求的前8項和21.(12分)我們知道:當是圓O:上一點,則圓O的過點的切線方程為;當是圓O:外一點,過作圓O的兩條切線,切點分別為,則方程表示直線AB的方程,即切點弦所在直線方程.請利用上述結論解決以下問題:已知圓C的圓心在x軸非負半軸上,半徑為3,且與直線相切,點在直線上,過點作圓C的兩條切線,切點分別為.(1)求圓C的方程;(2)當時,求線段AB的長;(3)當點在直線上運動時,求線段AB長度的最小值.22.(10分)已知拋物線C:()的焦點為F,原點O關于點F的對稱點為Q,點關于點Q的對稱點,也在拋物線C上(1)求p的值;(2)設直線l交拋物線C于不同兩點A、B,直線、與拋物線C的另一個交點分別為M、N,,,且,求直線l的橫截距的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】討論奇偶性,應用等差、等比前n項和公式對作分組求和即可.【詳解】當且為奇數時,,則,當且為偶數時,,則,∴.故選:B.2、B【解析】設直線的傾斜角為,設垂直于準線于,由拋物線的性質可得,則,當直線PA與拋物線相切時,最小,取得最大值,設出直線方程得到直線和拋物線相切時的點P的坐標,然后進行計算得到結果.【詳解】設直線的傾斜角為,設垂直于準線于,由拋物線的性質可得,所以則,當最小時,則值最大,所以當直線PA與拋物線相切時,θ最大,即最小,由題意可得,設切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標為1,即P的坐標,所以,,所以的最大值為:,故選:B【點睛】關鍵點睛:本題主要考查了拋物線的簡單性質.解題的關鍵是利用了拋物線的定義.一般和拋物線有關的小題,很多時可以應用結論來處理的;平時練習時應多注意拋物線的結論的總結和應用.尤其和焦半徑聯系的題目,一般都和定義有關,實現點點距和點線距的轉化3、C【解析】由題意分析可得,當時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【詳解】由題意可知,當三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點上,設外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.4、D【解析】根據點到直線的距離公式可知可以表示單位圓上點到直線的距離,利用圓的性質結合圖形即得.【詳解】由題可知,可以表示單位圓上點到直線的距離,設,因直線,即表示恒過定點,根據圓的性質可得.故選:D.5、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A6、C【解析】根據直線的斜率存在與不存在,分類討論,結合雙曲線的漸近線的性質,即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關系,以及雙曲線的漸近線的性質,其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應用,屬于基礎題.7、A【解析】求出,分析可得,可得出關于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯立,可得,則,易知點、關于軸對稱,且為線段的中點,則,又因為為等腰直角三角形,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.8、B【解析】作出不等式組對應的平面區域,然后根據線性規劃的幾何意義求得答案.【詳解】作出不等式組所對應的可行域如圖三角形陰影部分,平行移動直線直線,可以看到當移動過點A時,在y軸上的截距最小,聯立,解得,當且僅當動直線即過點時,取得最小值為,故選:B9、D【解析】先求導數,得切線的斜率,再根據點斜式得切線方程.【詳解】,選D.點睛】本題考查導數幾何意義以及直線點斜式方程,考查基本求解能力,屬基礎題.10、A【解析】依據獨立事件同時發生的概率即可求得甲乙兩人各射擊一次恰有一人中靶的概率.【詳解】記甲中靶為事件A,乙中靶為事件B,則甲乙兩人各射擊一次恰有一人中靶,包含甲中乙不中和甲不中乙中兩種情況,則甲乙兩人各射擊一次恰有一人中靶的概率為故選:A11、C【解析】根據直線的斜率公式即可求得答案.【詳解】設該直線的傾斜角為,該直線的斜率,即.故選:C12、B【解析】根據四種命題的結構特征可判斷(ⅰ)(ⅳ)的正誤,根據全稱命題的否定形式可判斷(ⅱ)的正誤,根據判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(ⅰ)錯誤.“,”的否定為“,使得”,故(ⅱ)正確,當時,,故有實根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯誤.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據題意求出每年底的本利和,歸納即可.【詳解】由題意知,第一年本利和為:元,第二年本利和為:元,第三年本利和為:元,以此類推,第十年本利和為:元,故答案:14、【解析】設圓錐的高為,可得出圓錐的母線長為,以及圓錐的底面半徑為,利用圓錐的側面積公式求出的值,再利用錐體的體積公式可求得結果.【詳解】設圓錐的高為,由于圓錐的軸截面是頂角為的等腰三角形,則軸截面三角形的底角為,故該圓錐的母線長為,底面半徑為,圓錐的側面積為,可得,因此,該圓錐的體積為.故答案為:.15、.【解析】由題意求得,,再結合等比數列的性質,即可求解.【詳解】由題意知,,是方程的兩根,可得,,又由,,所以,,可得,又由,所以.故答案為:.【點睛】本題主要考查了等比數列的通項公式,以及等比數列的性質的應用,其中解答中熟練應用等比數列的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、2【解析】畫出不等式組對應的可行域,平移動直線后可得目標函數的最小值.【詳解】不等式組對應的可行域如圖所示:將初始直線平移至點時,可取最小值,由可得,故,故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,,.【解析】(1)根據橢圓E:(a,b>0)過M(2,),N(,1)兩點,直接代入方程解方程組即可.(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,當切線斜率存在時,設該圓的切線方程為,聯立,根據,結合韋達定理運算,同時滿足,則存在,否則不存在,當切線斜率不存在時,驗證即可;在該圓的方程存在時,利用弦長公式結合韋達定理得到求解.【詳解】(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以,解得,所以,所以橢圓E的方程為.(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為,聯立得,則△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,所以,則所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.因為,所以,,①當時,,因為,所以,所以,所以,當且僅當時取”=”.②當時,.③當AB的斜率不存在時,兩個交點為或,所以此時,綜上,|AB|的取值范圍為,即:【點睛】思路點睛:1、解決直線與橢圓的位置關系的相關問題,其常規思路是先把直線方程與橢圓方程聯立,消元、化簡,然后應用根與系數的關系建立方程,解決相關問題.涉及弦中點的問題常常用“點差法”解決,往往會更簡單2、設直線與橢圓的交點坐標為A(x1,y1),B(x2,y2),則(k為直線斜率)注意:利用公式計算直線被橢圓截得的弦長是在方程有解的情況下進行的,不要忽略判別式大于零18、(1)(2)【解析】(1)根據題意求出即可得出;(2)利用點差法求出直線斜率即可得出方程.【小問1詳解】∵,,∴,,∵,∴,∴,∴雙曲線的標準方程為;【小問2詳解】設以定點為中點的弦的端點坐標為,可得,,由在雙曲線上,可得:,兩式相減可得以定點為中點的弦所在的直線斜率為:則以定點為中點的弦所在的直線方程為,即為,聯立方程得:,,符合,∴直線的方程為:.19、(1)證明見解析;(2).【解析】(1)由正方體性質易得,根據線面平行的判定可得面、面,再由面面平行的判定證明結論;(2)建立空間直角坐標系,設正方體棱長為2,確定相關點的坐標,進而求兩個半平面的法向量,應用空間向量夾角的坐標表示求二面角的余弦值【小問1詳解】在正方體中,且,且,且,則四邊形為平行四邊形,即有,因為面,面,則平面,同理平面,又,面,則平面平面E.小問2詳解】以點為坐標原點,,,所在直線分別為、、軸建立如圖所示的空間直角坐標系,設正方體的棱長為,則,,所以,,設平面的法向量為,則,令,則由平面,則是平面的一個法向量設平面與平面夾角,,因此平面與平面所成銳二面角的余弦值為20、(1);(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年綠色建筑師資格考試試題及答案
- 2025年基礎化學與實驗技能考試卷及答案
- 2025年環境科學實驗技能與實操考試試題及答案
- 2025年互聯網營銷及數據分析課程試卷
- 特殊學校教師管理制度
- 特殊時段作業管理制度
- 特種設備檔案管理制度
- 特色食品倉庫管理制度
- 豬場對癥用藥管理制度
- 環保事故調查管理制度
- 南京市江寧區某地鐵站巖土勘察報告
- 公職律師培訓有感-培訓心得體會
- GB/T 16758-2008排風罩的分類及技術條件
- GB 15612-1995食品添加劑蒸餾單硬脂酸甘油酯
- 廣東省著名旅游景點課件
- 洗煤廠培訓教程
- 郴州云湘礦冶有限責任公司10000ta錫精煉智能化升級技改項目報告書
- GB∕T 31564-2015 熱噴涂 熱噴涂沉積效率的測定
- 施工管理人員年度安全培訓考核記錄表格
- 小型農田水利灌溉工程施工組織設計(word共114頁)
- 通信電源施工方案
評論
0/150
提交評論