




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省湘西州2025屆高一上數學期末調研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設函數,則的值是A.0 B.C.1 D.22.集合,,則()A. B.C. D.3.設函數與的圖象的交點為,,則所在的區間是A. B.C. D.4.如圖,一個空間幾何體的正視圖和側視圖都是邊長為2的正方形,俯視圖是一個圓,那么這個幾何體的側面積為()A. B.C. D.5.設定義在上的函數滿足:當時,總有,且,則不等式的解集為()A. B.C. D.6.設向量,,,則A. B.C. D.7.在去年的足球聯賽上,一隊每場比賽平均失球個數是1.5,全年比賽失球個數的標準差是1.1;二隊每場比賽平均失球個數是2.1,全年比賽失球個數的標準差是0.4.則下列說法錯誤的是()A.平均來說一隊比二隊防守技術好 B.二隊很少失球C.一隊有時表現差,有時表現又非常好 D.二隊比一隊技術水平更不穩定8.將進貨單價為40元的商品按60元一個售出時,能賣出400個.已知該商品每個漲價1元,其銷售量就減少10個,為了賺得最大利潤,售價應定為A.每個70元 B.每個85元C.每個80元 D.每個75元9.若定義域為R的函數滿足,且,,有,則的解集為()A. B.C. D.10.如圖,網格線上小正方形邊長為1,粗線畫出的是某幾何體的三視圖,那么該幾何體的體積是A.3 B.2C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數=,若對任意的都有成立,則實數的取值范圍是______12.已知向量,,若,,,則的值為__________13.已知函數f(x)=①f(5)=______;②函數f(x)與函數y=(14.定義域為的奇函數,當時,,則關于的方程所有根之和為,則實數的值為________15.已知直線,則與間的距離為___________.16.函數的圖象一定過定點,則點的坐標是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,設函數=+(1)求函數的最小正周期和單調遞增區間;(2)當時,求函數的值域18.如圖,已知等腰梯形中,,,是的中點,,將沿著翻折成,使平面平面.(1)求證:平面;(2)求與平面所成的角;(3)在線段上是否存在點,使得平面,若存在,求出的值;若不存在,說明理由.19.田忌和齊王賽馬是歷史上有名的故事,設齊王的三匹馬分別為,田忌的三匹馬分別為.三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優劣程度可以用以下不等式表示:.(1)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;(2)為了得到更大的獲勝概率,田忌預先派出探子到齊王處打探實情,得知齊王第一場必出上等馬,那么,田忌應怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?20.某地政府為增加農民收人,根據當地地域特點,積極發展農產品加工業.經過市場調查,加工某農產品需投入固定成本3萬元,每加工噸該農產品,需另投入成本萬元,且已知加工后的該農產品每噸售價為10萬元,且加工后的該農產品能全部銷售完.(1)求加工后該農產品的利潤(萬元)與加工量(噸)的函數關系式;(2)求加工后的該農產品利潤的最大值.21.已知數列滿足(,且),且,設,,數列滿足.(1)求證:數列是等比數列并求出數列的通項公式;(2)求數列的前n項和;(3)對于任意,,恒成立,求實數m的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】,所以,故選C考點:分段函數2、B【解析】解不等式可求得集合,由交集定義可得結果.【詳解】,,.故選:B.3、A【解析】設,則,有零點的判斷定理可得函數的零點在區間內,即所在的區間是.選A4、A【解析】幾何體是一個圓柱,圓柱的底面是一個直徑為2的圓,圓柱的高是2,側面展開圖是一個矩形,進而求解.【詳解】由三視圖可知該幾何體是底面半徑為1高為2的圓柱,∴該幾何體的側面積為,故選:A【點睛】本題考查三視圖和圓柱的側面積,關鍵在于由三視圖還原幾何體.5、A【解析】將不等式變形后再構造函數,然后利用單調性解不等式即可.【詳解】由,令,可知當時,,所以在定義域上單調遞減,又,即,所以由單調性解得.故選:A6、A【解析】,由此可推出【詳解】解:∵,,,∴,,,,故選:A【點睛】本題主要考查平面向量垂直的坐標表示,考查平面向量的模,屬于基礎題7、B【解析】利用平均數和標準差的定義及意義即可求解.【詳解】對于A,因為一隊每場比賽平均失球數是1.5,二隊每場比賽平均失球數是2.1,所以平均說來一隊比二隊防守技術好,故A正確;對于B,因為二隊每場比賽平均失球數是2.1,全年比賽失球個數的標準差為0.4,所以二隊經常失球,故B錯誤;對于C,因為一隊全年比賽失球個數的標準差為1.1,二隊全年比賽失球個數的標準差為0.4,所以一隊有時表現很差,有時表現又非常好,故C正確;對于D,因為一隊全年比賽失球個數的標準差為1.1,二隊全年比賽失球個數的標準差為0.4,所以二隊比一隊技術水平更穩定,故D正確;故選:B.8、A【解析】設定價每個元,利潤為元,則,故當,時,故選A.考點:二次函數的應用.9、A【解析】根據已知條件易得關于直線x=2對稱且在上遞減,再應用單調性、對稱性求解不等式即可.【詳解】由題設知:關于直線x=2對稱且在上單調遞減由,得:,所以,解得故選:A10、D【解析】由三視圖可知該幾何體為有一條側棱與底面垂直的三棱錐.其體積為故選D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】轉化為對任意的都有,再分類討論求出最值,代入解不等式即可得解.【詳解】因為=,所以等價于,等價于,所以對任意的都有成立,等價于,(1)當,即時,在上為減函數,,在上為減函數,,所以,解得,結合可得.(2)當,即時,在上為減函數,,在上為減函數,在上為增函數,或,所以且,解得.(3)當,即時,,在上為減函數,,在上為增函數,,所以,解得,結合可知,不合題意.(4)當,即時,在上為減函數,在上為增函數,,在上為增函數,,此時不成立.(5)當時,在上為增函數,,在上為增函數,,所以,解得,結合可知,不合題意.綜上所述:.故答案為:12、C【解析】分析:由,,,可得向量與平行,且,從而可得結果.詳解:∵,,,∴向量與平行,且,∴.故答案為.點睛:本題主要考查共線向量的坐標運算,平面向量的數量積公式,意在考查對基本概念的理解與應用,屬于中檔題13、①.-14【解析】①根據函數解析式,代值求解即可;②在同一直角坐標系中畫出兩個函數的圖象,即可數形結合求得結果.【詳解】①由題可知:f5②根據f(x)的解析式,在同一坐標系下繪制f(x)與y=(數形結合可知,兩個函數有3個交點.故答案為:-14;14、【解析】由題意,作函數y=f(x)與y=a的圖象如下,結合圖象,設函數F(x)=f(x)﹣a(0<a<1)的零點分別為x1,x2,x3,x4,x5,則x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵關于x的方程f(x)﹣a=0(0<a<1)所有根之和為1﹣,∴a=故答案為.點睛:函數的零點或方程的根的問題,一般以含參數的三次式、分式、以e為底的指數式或對數式及三角函數式結構的函數零點或方程根的形式出現,一般有下列兩種考查形式:(1)確定函數零點、圖象交點及方程根的個數問題;(2)應用函數零點、圖象交點及方程解的存在情況,求參數的值或取值范圍問題研究方程根的情況,可以通過導數研究函數的單調性、最值、函數的變化趨勢等,根據題目要求,通過數形結合的思想去分析問題,可以使得問題的求解有一個清晰、直觀的整體展現.同時在解題過程中要注意轉化與化歸、函數與方程、分類討論思想的應用15、【解析】根據平行線間距離直接計算.【詳解】由已知可得兩直線互相平行,故,故答案為:.16、【解析】令,得,再求出即可得解.【詳解】令,得,,所以點的坐標是.故答案:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);;(2)【解析】(1)根據向量數量積的坐標運算及輔助角公式,可得,然后由周期公式去求周期,再結合正弦函數的單調性去求函數的單調遞增區間;(2)由(1)知,由求出,再結合正弦函數的單調性去求函數的值域【詳解】(1)依題意得===的最小正周期是:由解得,從而可得函數的單調遞增區間是:(2)由,可得,所以,從而可得函數的值域是:18、(1)證明見解析;(2)30°;(3)存在,.【解析】(1)首先根據已知條件并結合線面垂直的判定定理證明平面,再證明即可求解;(2)根據(1)中結論找出所求角,再結合已知條件即可求解;(3)首先假設存在,然后根據線面平行的性質以及已知條件,看是否能求出點的具體位置,即可求解.【詳解】(1)因為,是的中點,所以,故四邊形是菱形,從而,所以沿著翻折成后,,又因為,所以平面,由題意,易知,,所以四邊形是平行四邊形,故,所以平面;(2)因為平面,所以與平面所成的角為,由已知條件,可知,,所以是正三角形,所以,所以與平面所成的角為30°;(3)假設線段上是存在點,使得平面,過點作交于,連結,,如下圖:所以,所以,,,四點共面,又因平面,所以,所以四邊形為平行四邊形,故,所以為中點,故在線段上存在點,使得平面,且.19、(1)(2)田忌按或的順序出馬,才能使自己獲勝的概率達到最大【解析】(1)齊王與田忌賽馬,有六種情況,田忌獲勝的只有一種,故田忌獲勝的槪率為.(2)因齊王第一場必出上等馬,若田忌第一場必出上等馬或中等馬,則剩下二場,田忌至少輸一場,這時田忌必敗.為了使自己獲勝的概率最大,田忌第一場應出下等馬,在余下的兩場比賽中,田忌獲勝的概率為(余下兩場是齊王的中馬對田忌上馬和齊王的下馬對田忌的上馬;齊王的中馬對田忌下馬和齊王的下馬對田忌的中馬,前者田忌贏,后者田忌輸)解析:記與比賽為,其它同理.(1)齊王與田忌賽馬,有如下六種情況:;;;;;;其中田忌獲勝的只有一種:.故田忌獲勝的槪率為.(2)已知齊王第一場必出上等馬,若田忌第一場必出上等馬或中等馬,則剩下二場,田忌至少輸一場,這時田忌必敗.為了使自己獲勝的概率最大,田忌第一場應出下等馬,后兩場有兩種情形:①若齊王第二場派出中等馬,可能的對陣為:或.田忌獲勝的概率為,②若齊王第二場派出下等馬,可能的對陣為:或.田忌獲勝的概率也為.所以,田忌按或的順序出馬,才能使自己獲勝的概率達到最大.20、(1)(2)最大值6萬元【解析】(1)根據該農產品每噸售價為10萬元,需投入固定成本3萬元,每加工噸該農產品,需另投入成本萬元求解;(2)根據(1)的結論,分和,利用二次函數和基本不等式求解.【小問1詳解】解:當時,.當時,.故加工后該農產品的利潤(萬元)與加工量(噸)的函數關系式為:【小問2詳解】當時,,所以時,取得最大值5萬元;當時,因為,當且僅當時,等號成立,所以當時,取得最大值6萬元,因為,所以當時,取得最大值6萬元.21、(1)見解析(2)(3).【解析】(1)將式子寫為:得證,再通過等比數列公式得到的通項公式.(2)根據(1)得到進而得到數列通項公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國電動物流車行業經營效益及應用需求潛力分析報告
- 2025至2030中國瓦楞紙板和和紙板行業發展趨勢分析與未來投資戰略咨詢研究報告
- 2025至2030中國物流中心行業產業運行態勢及投資規劃深度研究報告
- 2025至2030中國牙科實驗室用CAD和和CAM銑床行業發展趨勢分析與未來投資戰略咨詢研究報告
- 北京冬奧會新年活動方案
- 冬季保健活動方案
- 創意進廠活動方案
- 醫師節黨員活動方案
- 區學雷鋒活動方案
- 冬至海參活動方案
- 2025安全生產月主題宣講課件十:主要負責人安全公開課
- GB/T 22894-2008紙和紙板加速老化在80 ℃和65%相對濕度條件下的濕熱處理
- GB/T 16630-2012冷凍機油
- GB/T 12242-2005壓力釋放裝置性能試驗規范
- 第四章-食用香精的應用
- 課程替代申請表(模板)
- 浪琴環球馬術冠軍賽上海站官方贊助商合作方案課件
- 醫療器械臨床評價課件
- 現場工程量確認單
- 2022年廣東省佛山市順德區承德小學小升初數學試卷
- 黃亮和李燕的創業故事(鳳山書屋)
評論
0/150
提交評論