




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省懷化市中方一中2025屆高二上數學期末教學質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件2.程大位是明代著名數學家,他的《新編直指算法統宗》是中國歷史上一部影響巨大的著作.它問世后不久便風行宇內,成為明清之際研習數學者必讀的教材,而且傳到朝鮮、日本及東南亞地區,對推動漢字文化圈的數學發展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執行該程序框圖,求得該垛果子的總數為()A.120 B.84C.56 D.283.已知命題:,命題:,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.將6位志愿者分成4組,其中兩個組各2人,另兩個組各1人,分赴廣交會的四個不同地方服務,不同的分配方案有()種A.· B.·C. D.5.甲、乙兩名同學同時從教室出發去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館6.等差數列中,已知,則()A.36 B.27C.18 D.97.如圖,在棱長為的正方體中,為線段的中點,為線段的中點,則直線到直線的距離為()A. B.C. D.8.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個9.如圖,在棱長為1的正方體中,M是的中點,則點到平面MBD的距離是()A. B.C. D.10.拋物線的準線方程為,則實數的值為()A. B.C. D.11.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.12.2021年7月,某文學網站對該網站的數字媒體內容能否滿足讀者需要進行了調查,調查部門隨機抽取了名讀者,所得情況統計如下表所示:滿意程度學生族上班族退休族滿意一般不滿意記滿分為分,一般為分,不滿意為分.設命題:按分層抽樣方式從不滿意的讀者中抽取人,則退休族應抽取人;命題:樣本中上班族對數字媒體內容滿意程度的方差為.則下列命題中為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.寫出一個同時滿足下列條件①②的圓C的一般方程______①圓心在第一象限;②圓C與圓相交的弦的方程為14.計算:________15.不透明袋中裝有完全相同,標號分別為1,2,3,…,8的八張卡片.從中隨機取出3張.設X為這3張卡片的標號相鄰的組數(例如:若取出卡片的標號為3,4,5,則有兩組相鄰的標號3、4和4、5,此時X的值是2).則隨機變量X的數學期望______16.北京天壇的圓丘壇為古代祭天的場所,分上、中、下三層,上層的中心是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開始,每一圈比前一圈多9塊.已知每層圈數相同,共有9圈,則下層比上層多______塊石板三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為(1)求橢圓的方程;(2)設直線與橢圓相交于不同的兩點,已知點的坐標為,若,求直線的方程18.(12分)從某居民區隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得.(1)求家庭的月儲蓄y對月收入x的線性回歸方程;(2)判斷變量x與y之間是正相關還是負相關;(3)若該居民區某家庭月收入為7千元,預測該家庭的月儲蓄.附:線性回歸方程中,,,其中,為樣本平均值.19.(12分)已知點P到點的距離比它到直線的距離小1.(1)求點P的軌跡方程;(2)點M,N在點P的軌跡上且位于x軸的兩側,(其中O為坐標原點),求面積的最小值.20.(12分)已知等比數列滿足,(1)求數列通項公式;(2)記,求數列的前n項和21.(12分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求點到平面的距離.22.(10分)已知數列的前n項和,(1)求數列的通項公式;(2)設,,求數列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據充分條件和必要條件的定義即可得出答案.【詳解】解:因為:,:,所以,所以為q的既不充分又不必要條件.故選:D.2、B【解析】按照框圖中程序,逐步執行循環,即可求得答案.【詳解】第一次循環:,,第二次循環:,,第三次循環:,,第四次循環:,,第五次循環:,,第六次循環:,,第七次循環:,,退出循環,輸出.故選:B3、B【解析】利用充分條件和必要條件的定義判斷.【詳解】因為命題:或,命題:,所以是的必要不充分條件,故選:B4、B【解析】先按要求分為四組,再四個不同地方,四個組進行全排列.【詳解】兩個組各2人,兩個組各1人,屬于部分平均分組,要除以平均分組的組數的全排列,故分組方案有種,再將分得的4組,分配到四個不同地方服務,則不同的分配方案有種.故選:B5、A【解析】設出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A6、B【解析】直接利用等差數列的求和公式及等差數列的性質求解.【詳解】解:由題得.故選:B7、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉化成點到直線的距離,結合余弦定理即同角三角函數基本關系,求得,因此可得,進而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因為,分別為,的中點,因為,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因為,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C8、B【解析】構造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當與水平面垂直且在面的左側(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉,轉一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30
,綜上,這樣的平面α有2個,故選:B.9、A【解析】等體積法求解點到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點E,連接ME,由三線合一得:ME⊥BD,則,故,設到平面MBD的距離是,則,解得:,故點到平面MBD的距離是.故選:A10、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準線方程為,所以.故選:B11、B【解析】求出已知雙曲線的漸近線方程,逐一驗證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B12、A【解析】由抽樣比再乘以可得退休族應抽取人數可判斷命題,求出上班族對數字媒體內容滿意程度的平均分,由方差公式計算方差可判斷,再由復合命題的真假判斷四個選項,即可得正確選項.【詳解】因為退休族應抽取人,所以命題正確;樣本中上班族對數字媒體內容滿意程度的平均分為,方差為,命題正確,所以為真,、、為假命題,故選:二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】設所求圓為,由圓心在第一象限可判斷出,只需取特殊值,即可得到答案.【詳解】可設所求圓為,即只需,解得:,不妨取,則圓的方程為:.故答案為:(答案不唯一)14、【解析】根據無窮等比數列的求和公式直接即可求出答案.【詳解】.故答案為:.15、##【解析】設為這3張卡片的標號相鄰的組數,則的可能取值為0,1,2,利用列舉法分別求出相應的概率,由此能求出隨機變量的數學期望【詳解】解:不透明袋中裝有完全相同,標號分別為1,2,3,,8的八張卡片從中隨機取出3張,共有種,設為這3張卡片的標號相鄰的組數,則的可能取值為0,1,2,的情況有:,2,,,3,,,4,,,5,,,6,,,7,,共6個,,的情況有:取,另外一個數有5種取法;取,另外一個數有4種取法;取,另外一個數有4種取法;取,另外一個數有4種取法;取,另外一個數有4種取法;取,另外一個數有4種取法;取,另外一個數有5種取法的情況一共有:,,,隨機變量的數學期望:故答案為:16、1458【解析】首先由條件可得第圈的石板為,且為等差數列,利用基本量求和,即可求解.【詳解】設第圈的石板為,由條件可知數列是等差數列,且上層的第一圈為,且,所以,上層的石板數為,下層的石板數為.所以下層比上層多塊石板.故答案為:1458三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由離心率公式以及橢圓的性質列出方程組得出橢圓的方程;(2)聯立直線和橢圓方程,利用韋達定理得出點坐標,最后由距離公式得出直線的方程【小問1詳解】由題意可得,得,,橢圓;【小問2詳解】設,,直線為由,得顯然,由韋達定理有:,則;所以,且,若,解得,所以18、(1)=0.3x-0.4;(2)正相關;(3)1.7(千元).【解析】(1)由題意得到n=10,求得,進而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【詳解】(1)由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.(2)因為,所以變量y的值隨x的值增加而增加,故x與y之間是正相關.(3)將x=7代入回歸方程可以預測該家庭的月儲蓄為=0.3×7-0.4=1.7(千元).19、(1);(2).【解析】(1)根據給定條件可得點P到點的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設出點M,N的坐標,再結合給定條件及三角形面積定理列式,借助均值不等式計算作答.【小問1詳解】因點P到點的距離比它到直線的距離小1,顯然點P與F在直線l同側,于是得點P到點的距離等于它到直線的距離,則點P的軌跡是以F為焦點,直線為準線的拋物線,所以點P的軌跡方程是.【小問2詳解】由(1)設點,,且,因,則,解得,S,當且僅當,即時取“=”,所以面積的最小值為.【點睛】思路點睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動點的橫(縱)坐標為變量,建立函數關系求解作答.20、(1)(2)【解析】(1)通過基本量列方程組可得;(2)由裂項相消法可解【小問1詳解】由題意得解得,所以數列的通項公式為【小問2詳解】由(1)知,則所以21、(1)證明見解析;(2).【解析】(1)根據題意證明,,然后根據線面垂直的判定定理證明問題;(2)結合(1),進而利用等體積法求得答案.【小問1詳解】由題意,,為等邊三角形,,∵平面ABCD,∴,則,即為中點.連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 糧食倉儲企業綠色評價體系考核試卷
- 硅冶煉過程中的熱效率分析與改進考核試卷
- 纖維原料的產銷模式和渠道建設考核試卷
- 2023-2024學年廣東省佛山市名校高二下學期期中聯考語文試題(解析版)
- 碩士生求職攻略
- 吉林省四平市鐵西區重點中學2024-2025學年初三下-(期中)物理試題試卷含解析
- 寧夏民族職業技術學院《外國文學作品原著》2023-2024學年第二學期期末試卷
- 九江職業大學《機器學習與模式識別I(雙語)》2023-2024學年第二學期期末試卷
- 私立華聯學院《游戲中的數學》2023-2024學年第一學期期末試卷
- 四川省成都市崇州市2025屆四年級數學第二學期期末綜合測試試題含解析
- 學校食堂副食品配送服務投標方案(技術方案)
- 2025年共青團入團考試測試題庫及答案
- 私人教練運動指導免責聲明書
- 精神科幻覺護理常規
- 第二單元《我的語文生活》公開課一等獎創新教學設計-(同步教學)統編版語文七年級下冊名師備課系列
- 2025年租房合同房東模板
- 小兒法洛四聯癥術后護理查房
- 2025年興業銀行股份有限公司招聘筆試參考題庫含答案解析
- 2025年1月四川高考改革適應性演練測試物理試題(八省聯考四川物理卷)(原卷版)
- 大學生實習手冊
- 2025年鄭州鐵路局招聘筆試參考題庫含答案解析
評論
0/150
提交評論