2025屆上海市崇明區(qū)高二上數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
2025屆上海市崇明區(qū)高二上數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
2025屆上海市崇明區(qū)高二上數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
2025屆上海市崇明區(qū)高二上數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
2025屆上海市崇明區(qū)高二上數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海市崇明區(qū)高二上數(shù)學期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A.1 B.2C.3 D.52.在圓內(nèi),過點的最長弦和最短弦分別是AC和BD,則四邊形ABCD的面積為()A. B.C. D.3.已知點,,直線:與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.4.正方體中,E、F分別是與的中點,則直線ED與所成角的余弦值是()A. B.C. D.5.等比數(shù)列中,,,則()A. B.C. D.6.已知為定義在R上的偶函數(shù)函數(shù),且在單調(diào)遞減.若關于的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B.C. D.7.如圖,在三棱柱中,平面,,,分別是,中點,在線段上,則與平面的位置關系是()A.垂直 B.平行C.相交但不垂直 D.要依點的位置而定8.設為等差數(shù)列的前項和,若,則的值為()A.14 B.28C.36 D.489.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經(jīng)歷發(fā)射入軌、地月轉(zhuǎn)移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉(zhuǎn)移、環(huán)月等待、月地轉(zhuǎn)移、再入回收等11個關鍵階段.在經(jīng)過交會對接與樣品轉(zhuǎn)移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠月點(離月面最遠的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.8210.已知拋物線的焦點為,拋物線上的兩點,均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.11.在一次體檢中,發(fā)現(xiàn)甲、乙兩個單位的職工中體重超過的人員的體重如下(單位:).若規(guī)定超過為顯著超重,從甲、乙兩個單位中體重超過的職工中各抽取1人,則這2人中,恰好有1人顯著超重的概率為()A. B.C. D.12.已知點在平面α上,其法向量,則下列點不在平面α上的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,,,,若數(shù)列是遞減數(shù)列,數(shù)列是遞增數(shù)列,則______14.已知變量X,Y的一組樣本數(shù)據(jù)如下表所示,其中有一個數(shù)據(jù)丟失,用a表示.若根據(jù)這組樣本利用最小二乘法求得的Y關于X的回歸直線方程為,則_________.X1491625Y2a369314215.如圖,在直三棱柱中,,為中點,則平面與平面夾角的正切值為___________.16.過橢圓上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)分別求滿足下列條件的曲線方程(1)以橢圓的短軸頂點為焦點,且離心率為的橢圓方程;(2)過點,且漸近線方程為的雙曲線的標準方程18.(12分)已知動直線l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9(1)求證:無論m為何值,直線l與圓C總相交(2)m為何值時,直線l被圓C所截得的弦長最小?請求出該最小值19.(12分)有兩位射擊運動員在一次射擊測試中各射靶7次,每次命中的環(huán)數(shù)如下:甲6978856乙a398964經(jīng)計算可得甲、乙兩名射擊運動員的平均成績是一樣的(1)求實數(shù)a的值;(2)請通過計算,判斷甲、乙兩名射擊運動員哪一位的成績更穩(wěn)定?20.(12分)已知數(shù)列滿足且(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和為.21.(12分)求適合下列條件的橢圓的標準方程:(1)經(jīng)過點,;(2)長軸長是短軸長的3倍,且經(jīng)過點22.(10分)已知函數(shù),滿足,已知點是曲線上任意一點,曲線在處的切線為.(1)求切線的傾斜角的取值范圍;(2)若過點可作曲線的三條切線,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用導數(shù)的定義,以及運算法則,即可求解.【詳解】,,所以,所以故選:C2、D【解析】由題,求得圓的圓心和半徑,易知最長弦,最短弦為過點與垂直的弦,再求得BD的長,可得面積.【詳解】圓化簡為可得圓心為易知過點的最長弦為直徑,即而最短弦為過與垂直的弦,圓心到的距離:所以弦所以四邊形ABCD的面積:故選:D3、A【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,由可得,作出圖象如圖所示:,,若直線與線段相交,則或,解得或,所以實數(shù)的取值范圍是或,故選:A.4、A【解析】以A為原點建立空間直角坐標系,求出E,F,D,D1點的坐標,利用向量求法求解【詳解】如圖,以A為原點建立空間直角坐標系,設正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選:A【點睛】本題考查異面直線所成角的求法,屬于基礎題.5、D【解析】設公比為,依題意得到方程,即可求出,再根據(jù)等比數(shù)列通項公式計算可得;【詳解】解:設公比為,因為,,所以,即,解得,所以;故選:D6、C【解析】由條件利用函數(shù)的奇偶性和單調(diào)性,可得對恒成立,轉(zhuǎn)化為且對恒成立.求得相應的最大值和最小值,從而求得的范圍【詳解】定義在上的函數(shù)為偶函數(shù),且在上遞減,在上單調(diào)遞增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,則,,,,在上遞增,上遞減,令,當時,,在上遞減,故可知,解得,所以實數(shù)m的取值范圍是故選:C7、B【解析】構造三角形,先證∥平面,同理得∥平面,再證平面∥平面即可.【詳解】連接,,.因為在直三棱柱中,M,N分別是,AB的中點,所以∥.因為平面內(nèi),平面,所以∥平面.同理可得AM∥平面.又因為,平面,平面,所以平面∥平面.又因為P點在線段上,所以∥平面.故選:B.8、D【解析】利用等差數(shù)列的前項和公式以及等差數(shù)列的性質(zhì)即可求出.【詳解】因為為等差數(shù)列的前項和,所以故選:D【點睛】本題考查了等差數(shù)列的前項和公式的計算以及等差數(shù)列性質(zhì)的應用,屬于較易題.9、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C10、C【解析】作垂直準線于,垂直準線于,作于,結合拋物線定義得出斜率為可求.【詳解】如圖:作垂直準線于,垂直準線于,作于,因為,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.11、B【解析】列舉出所有選取的情況,再找出滿足題意的情況,根據(jù)古典概型的概率計算公式即可求解.【詳解】不妨用表示每種抽取情況,其中是指甲單位抽取1人的體重,代表從乙單位抽取人的體重.則所有的可能有16種,如下所示:,,,,,,,,,,,,,,,其中滿足題意的有6種:,,,,,故抽取的這2人中,恰好有1人顯著超重的概率為:.故選:.12、D【解析】根據(jù)法向量的定義,利用向量垂直對四個選項一一驗證即可.【詳解】對于A:記,則.因為,所以點在平面α上對于B:記,則.因為,所以點在平面α上對于C:記,則.因為,所以點在平面α上對于D:記,則.因為,所以點不在平面α上.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)所給條件可歸納出當時,,利用迭代法即可求解.【詳解】因為,,,所以,即,,且是遞減數(shù)列,數(shù)列是遞增數(shù)列或(舍去),,,故可得當時,,故答案為:14、17【解析】根據(jù)回歸直線必過樣本點中心即可解出【詳解】因為,,所以,解得故答案為:1715、【解析】由條件可得均為等腰直角三角形,從而,先證明平面,從而,即得到為平面與平面夾角的平面角,從而可求解.【詳解】由,則,則在直三棱柱中,平面,又平面,則又,所以平面平面,所以由由條件可得均為等腰直角三角形,則所以,即,由所以平面,又平面所以,即為平面與平面夾角的平面角.在直角中,所以故答案為:16、【解析】相關點法求解軌跡方程.【詳解】設,則,則,即,因為,代入可得,即的軌跡方程為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意得出的值后寫橢圓方程(2)待定系數(shù)法設方程,由題意列方程求解【小問1詳解】的短軸頂點為(0,-3),(0,3),∴所求橢圓的焦點在y軸上,且c=3又,∴a=6.∴∴所求橢圓方程為【小問2詳解】根據(jù)雙曲線漸近線方程為,可設雙曲線的方程,把代入得m=1.所以雙曲線的方程為18、(1)詳見解析(2)m為-時,截得的弦長最小,最小值為2【解析】(1)將直線l變形,可知直線l過定點,證明定點在圓內(nèi)部;(2)利用垂徑定理和弦長公式可得.【詳解】(1)證明:直線l變形為m(x-y+1)+(3x-2y)=0令解得,如圖所示,故動直線l恒過定點A(2,3)而|AC|==<3(半徑)∴點A在圓內(nèi),故無論m取何值,直線l與圓C總相交(2)解:由平面幾何知識知,弦心距越大,弦長越小,即當AC垂直直線l時,弦長最小,此時kl·kAC=-1,即,∴m=-最小值為故m為-時,直線l被圓C所截得的弦長最小,最小值為2【點睛】考查直線過定點、點與圓的位置關系以及弦長問題,解題的關鍵是直線系形式的轉(zhuǎn)化.19、(1)10;(2)甲的成績比乙更穩(wěn)定.【解析】(1)根據(jù)甲乙成績求他們的平均成績,由平均成績相等列方程求參數(shù)a的值.(2)由已知數(shù)據(jù)及(1)的結果,求甲乙的方差并比較大小,即可知哪位運動員成績更穩(wěn)定.【小問1詳解】由題意,甲的平均成績?yōu)椋业钠骄煽優(yōu)椋旨住⒁覂擅鋼暨\動員的平均成績是一樣的,有,解得,故實數(shù)a為10;【小問2詳解】甲的方差,乙的方差,由,知:甲的成績比乙更穩(wěn)定.20、(1)證明見解析,;(2).【解析】(1)對遞推公式進行變形,結合等差數(shù)列的定義進行求解即可;(2)運用裂項相消法進行求解即可.【小問1詳解】因為,且,所以即,所以數(shù)列是公差為2的等差數(shù)列.又,所以即;【小問2詳解】由(1)得,所以.故.21、(1);(2)或.【解析】(1)由已知可得,,且焦點在軸上,進而可得橢圓的標準方程;(2)由已知可得,,此時焦點在軸上,或,,此時焦點在軸上,進而可得橢圓的標準方程;【小問1詳解】解:橢圓經(jīng)過點,,,,,且焦點在軸上,橢圓的標準方程為.【小問2詳解】解:長軸長是短軸長的3倍,且經(jīng)過點,當點在長軸上時,,,此時焦點在軸上,此時橢圓的標準方程為;當點在短軸上時,,,此時焦點在軸上,此時橢圓的標準方程.綜合得橢圓的方程為或.22、(1)(2)【解析】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論