甘肅省張掖二中2025屆數學高二上期末復習檢測試題含解析_第1頁
甘肅省張掖二中2025屆數學高二上期末復習檢測試題含解析_第2頁
甘肅省張掖二中2025屆數學高二上期末復習檢測試題含解析_第3頁
甘肅省張掖二中2025屆數學高二上期末復習檢測試題含解析_第4頁
甘肅省張掖二中2025屆數學高二上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省張掖二中2025屆數學高二上期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則()A.1 B.2C.4 D.82.一質點從出發,做勻速直線運動,每秒的速度為秒后質點所處的位置為()A. B.C. D.3.礦山爆破時,在爆破點處炸開的礦石的運動軌跡可看作是不同的拋物線,根據地質、炸藥等因素可以算出這些拋物線的范圍,這個范圍的邊界可以看作一條拋物線,叫“安全拋物線”,如圖所示.已知某次礦山爆破時的安全拋物線的焦點為,則這次爆破時,礦石落點的最遠處到點的距離為()A. B.2C. D.4.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm5.在等比數列中,,公比,則()A. B.6C. D.26.若拋物線焦點坐標為,則的值為A. B.C.8 D.47.已知橢圓與雙曲線有相同的焦點,則的值為A. B.C. D.8.若直線與平行,則實數m等于()A.0 B.1C.4 D.0或49.雙曲線的漸近線方程是()A. B.C. D.10.下列事件:①連續兩次拋擲同一個骰子,兩次都出現2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標準大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數是()A.1 B.2C.3 D.411.如圖,在四棱錐中,底面ABCD是平行四邊形,已知,,,,則()A. B.C. D.12.已知是兩個數1,9的等比中項,則圓錐曲線的離心率為()A.或 B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數在R上連續且可導,為偶函數且,其導函數滿足,則不等式的解集為___.14.某中學高一年級有420人,高二年級有460人,高三年級有500人,用分層抽樣的方法抽取部分樣本,若從高一年級抽取21人,則從高三年級抽取的人數是__________15.設數列滿足,則an=________16.如圖,在三棱錐中,,二面角的余弦值為,若三棱錐的體積為,則三棱錐外接球的表面積為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前項和分別是,滿足,,且.(1)求數列的通項公式;(2)若數列對任意都有恒成立,求.18.(12分)已知圓,點(1)若點在圓外部,求實數的取值范圍;(2)當時,過點的直線交圓于,兩點,求面積的最大值及此時直線l的斜率19.(12分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(1)求證:平面;(2)求平面與平面CEB夾角的余弦值20.(12分)已知拋物線過點,是拋物線的焦點,直線交拋物線于另一點,為坐標原點.(1)求拋物線的方程和焦點的坐標;(2)拋物線的準線上是否存在點使,若存在請求出點坐標,若不存在請說明理由.21.(12分)設:,:.(1)若命題“,是真命題”,求的取值范圍;(2)若是的充分不必要條件,求的取值范圍.22.(10分)已知函數(1)當時,求的單調區間與極值;(2)若不等式在區間上恒成立,求k的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意結合導數的運算可得,再由導數的概念即可得解.【詳解】由題意,所以,所以.故選:D.2、A【解析】利用空間向量的線性運算即可求解.【詳解】2秒后質點所處的位置為.故選:A【點睛】本題考查了空間向量的線性運算,考查了基本知識掌握的情況以及學生的綜合素養,屬于基礎題.3、D【解析】根據給定條件求出拋物線的頂點,結合拋物線的性質求出p值即可計算作答.【詳解】依題意,拋物線的頂點坐標為,則拋物線的頂點到焦點的距離為,p>0,解得,于是得拋物線的方程為,由得,,即拋物線與軸的交點坐標為,因此,,所以礦石落點的最遠處到點的距離為.故選:D4、B【解析】由離心率求出雙曲線方程,由對稱性設出點A,B,D坐標,求出坐標,求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設,則,,則,所以,則,解得:,故.故選:B5、D【解析】利用等比數列的通項公式求解【詳解】由等比數列的通項公式得:.故選:D6、A【解析】先把拋物線方程整理成標準方程,進而根據拋物線的焦點坐標,可得的值.【詳解】拋物線的標準方程為,因為拋物線的焦點坐標為,所以,所以,故選A.【點睛】該題考查的是有關利用拋物線的焦點坐標求拋物線的方程的問題,涉及到的知識點有拋物線的簡單幾何性質,屬于簡單題目.7、C【解析】根據題意可知,結合的條件,可知,故選C考點:橢圓和雙曲線性質8、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.9、A【解析】先將雙曲線的方程化為標準方程得,再根據雙曲線漸近線方程求解即可.【詳解】解:將雙曲線的方程化為標準方程得,所以,所以其漸近線方程為:,即.故選:A.10、B【解析】因為隨機事件指的是在一定條件下,可能發生,也可能不發生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續兩次拋擲同一個骰子,兩次都出現2點這一事件可能發生也可能不發生,①是隨機事件某人買彩票中獎這一事件可能發生也可能不發生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標準大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B11、A【解析】利用空間向量加法法則直接求解【詳解】連接BD,如圖,則故選:A12、A【解析】根據題意可知,當時,根據橢圓離心率公式,即可求出結果;當時,根據雙曲線離心率公式,即可求出結果.【詳解】因為是兩個數1,9的等比中項,所以,所以,當時,圓錐曲線,其離心率為;當時,圓錐曲線,其離心率為;綜上,圓錐曲線的離心率為或.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知條件可得圖象關于對稱,在上遞增,在上遞減,然后分四種情況討論求解即可【詳解】因為為偶函數,所以的圖象關于軸對稱,所以的圖象關于對稱,因為,所以當時,,當時,,所以在上遞增,在上遞減,由,得,或,或,或,解得,或,或,或,綜上,,所以等式的解集為故答案為:14、25【解析】由條件先求出抽樣比,從而可求出從高三年級抽取的人數.【詳解】由題意抽樣比例:則從高三年級抽取的人數是人故答案為:2515、【解析】先由題意得時,,再作差得,驗證時也滿足【詳解】①當時,;當時,②①②得,當也成立.即故答案為:16、【解析】取的中點,連接,,過點A作,垂足為,設,利用三角形的邊角關系求出,利用錐體的體積公式求出的值,確定三棱錐外接球的球心,求解外接球的半徑,由表面積公式求解即可【詳解】取的中點,連接,,過點A作,交DE的延長線于點,所以為二面角的平面角,設,則,,所以,所以,EH=,因為三棱錐的體積為,所以,解得:,,設外接圓的圓心為,三棱錐外接球的球心為,連接,,,過點O作OF⊥AH于點F,則,,,,設,則,,由勾股定理得:,解得:,所以三棱錐外接球的半徑滿足,則三棱錐的外接球的表面積為故答案為:【點睛】本題考查了幾何體的外接球問題,棱錐的體積公式的理解與應用,解題的關鍵是確定外接球球心的位置,三棱錐的外接球的球心在過各面外心且與此面垂直的直線上,由此結論可以找到外接球的球心,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據已知遞推關系式再寫一式,然后兩式相減,由等差數列、等比數列的定義即可求解;(2)根據已知遞推關系式再寫一式,然后兩式相減,求出,最后利用錯位相減法即可得答案.【小問1詳解】解:因為,,所以,,得,所以是以2為首項2為公差的等差數列,是以1為首項2為公差的等差數列,所以,,所以;因為,所以,又由得,所以是以2為首項2為公比的等比數列,所以.【小問2詳解】解:當時,,當時,,得,即,記,則,,則.18、(1);(2)最大值為2,【解析】(1)根據題意,將圓的方程變形為標準方程,由點與圓的位置關系可得,求解不等式組得答案;(2)當時,圓的方程為,求出圓心與半徑,設,則,分析可得面積的最大值,結合直線與圓的位置關系可得圓心到直線的距離,設直線的方程為,即,由點到直線的距離公式列式求得的值【詳解】解:(1)根據題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當時,圓的方程為,圓心為,半徑,設,則,當時,面積取得最大值,且其最大值為2,此時為等腰直角三角形,圓心到直線的距離,設直線的方程為,即,則有,解得,即直線的斜率【點睛】易錯點點睛:本題第一問解答過程中,容易忽視二元二次方程表示圓的條件,導致出錯,解題的時候要考慮周全,考查運算求解能力,是中檔題.19、(1)證明見解析;(2).【解析】(1)連接與交于點O,連接OE,得到,再利用線面平行的判定定理證明即可;(2)根據,底面,建立空間直角坐標系,求得平面的一個法向量,再根據底面,得到平面一個法向量,然后由夾角公式求解.【小問1詳解】如圖所示:連接與交于點O,連接OE,如圖,由分別為的中點所以,又平面,平面,所以平面;【小問2詳解】由,底面,故底面建立如圖所示空間直角坐標系:則,所以,設平面的一個法向量為:,則,即,令,則,則,因為底面,所以為平面一個法向量,所以所以平面與平面CEB夾角的余弦值為.20、(1)拋物線的方程為,焦點坐標為(2)存在,且【解析】(1)根據點坐標求得,進而求得拋物線的方程和焦點的坐標.(2)設,根據列方程,化簡求得的坐標.【小問1詳解】將代入得,所以拋物線的方程為,焦點坐標為.【小問2詳解】存在,理由如下:直線的方程為,或,即.拋物線的準線,設,,即,所以.即存在點使.21、(1)(2)【解析】(1)解不等式得到解集,根據題意列出不等式組,求出的取值范圍;(2)先解不等式,再根據充分不必要條件得到是的真子集,進而求出的取值范圍.【小問1詳解】因為,由可得:,因為“,”為真命題,所以,即,解得:.即的取值范圍是.【小問2詳解】因為,由可得:,,因為是的充分不必要條件,所以是的真子集,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論