




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年福建漳州市第二學期高三年級期末質量檢測試題數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③2.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.3.函數在上單調遞減的充要條件是()A. B. C. D.4.集合的真子集的個數是()A. B. C. D.5.函數的一個零點在區間內,則實數a的取值范圍是()A. B. C. D.6.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.607.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數的絕對值越接近1;②在回歸分析中,可用相關指數的值判斷擬合效果,越小,模型的擬合效果越好;③若數據的方差為1,則的方差為4;④已知一組具有線性相關關系的數據,其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數為()A.4 B.3 C.2 D.18.將函數圖象上所有點向左平移個單位長度后得到函數的圖象,如果在區間上單調遞減,那么實數的最大值為()A. B. C. D.9.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為()A.56383 B.57171 C.59189 D.6124210.要得到函數的圖象,只需將函數的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位11.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件12.正項等比數列中的、是函數的極值點,則()A. B.1 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內投入一質點,質點落入陰影部分的概率是_____________14.若變量x,y滿足:,且滿足,則參數t的取值范圍為_______.15.若函數與函數,在公共點處有共同的切線,則實數的值為______.16.設函數滿足,且當時,又函數,則函數在上的零點個數為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(mR)的導函數為.(1)若函數存在極值,求m的取值范圍;(2)設函數(其中e為自然對數的底數),對任意mR,若關于x的不等式在(0,)上恒成立,求正整數k的取值集合.18.(12分)已知函數,其導函數為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.19.(12分)己知,函數.(1)若,解不等式;(2)若函數,且存在使得成立,求實數的取值范圍.20.(12分)等差數列的公差為2,分別等于等比數列的第2項,第3項,第4項.(1)求數列和的通項公式;(2)若數列滿足,求數列的前2020項的和.21.(12分)已知數列的各項均為正數,為其前n項和,對于任意的滿足關系式.(1)求數列的通項公式;(2)設數列的通項公式是,前n項和為,求證:對于任意的正數n,總有.22.(10分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據三角函數的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數的對稱軸、對稱中心,考查三角函數圖象變換,屬于基礎題.2.D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.3.C【解析】
先求導函數,函數在上單調遞減則恒成立,對導函數不等式換元成二次函數,結合二次函數的性質和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數單調區間.求三角函數單調區間的兩種方法:(1)代換法:就是將比較復雜的三角函數含自變量的代數式整體當作一個角(或),利用基本三角函數的單調性列不等式求解;(2)圖象法:畫出三角函數的正、余弦曲線,結合圖象求它的單調區間.4.C【解析】
根據含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎題.5.C【解析】
顯然函數在區間內連續,由的一個零點在區間內,則,即可求解.【詳解】由題,顯然函數在區間內連續,因為的一個零點在區間內,所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應用,屬于基礎題.6.D【解析】
先設A點的坐標為,根據對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數形結合思想,以及化歸與轉化思想的應用.7.C【解析】
①根據線性相關性與r的關系進行判斷,
②根據相關指數的值的性質進行判斷,
③根據方差關系進行判斷,
④根據點滿足回歸直線方程,但點不一定就是這一組數據的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關性越強,則相關系數r的絕對值越接近于1,故①正確;
②用相關指數的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;
③若統計數據的方差為1,則的方差為,故③正確;
④因為點滿足回歸直線方程,但點不一定就是這一組數據的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;
所以正確的命題有①③.
故選:C.【點睛】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.8.B【解析】
根據條件先求出的解析式,結合三角函數的單調性進行求解即可.【詳解】將函數圖象上所有點向左平移個單位長度后得到函數的圖象,則,設,則當時,,,即,要使在區間上單調遞減,則得,得,即實數的最大值為,故選:B.【點睛】本小題主要考查三角函數圖象變換,考查根據三角函數的單調性求參數,屬于中檔題.9.C【解析】
根據“被5除余3且被7除余2的正整數”,可得這些數構成等差數列,然后根據等差數列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數構成首項為23,公差為的等差數列,記數列則令,解得.故該數列各項之和為.故選:C.【點睛】本題考查等差數列的應用,屬基礎題。10.D【解析】
直接根據三角函數的圖象平移規則得出正確的結論即可;【詳解】解:函數,要得到函數的圖象,只需將函數的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數圖象平移的應用問題,屬于基礎題.11.A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點睛】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力.12.B【解析】
根據可導函數在極值點處的導數值為,得出,再由等比數列的性質可得.【詳解】解:依題意、是函數的極值點,也就是的兩個根∴又是正項等比數列,所以∴.故選:B【點睛】本題主要考查了等比數列下標和性質以應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
聯立直線與拋物線方程求出交點坐標,再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據幾何概型的概率公式計算可得;【詳解】解:聯立解得或,即,,,,,故答案為:【點睛】本題考查幾何概型的概率公式的應用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.14.【解析】
根據變量x,y滿足:,畫出可行域,由,解得直線過定點,直線繞定點旋轉與可行域有交點即可,再結合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當時,滿足條件,當時,直線得斜率應該不小于AC,而不大于AB,即或,解得,且,綜上:參數t的取值范圍為.故答案為:【點睛】本題主要考查線性規劃的應用,還考查了轉化運算求解的能力,屬于中檔題.15.【解析】
函數的定義域為,求出導函數,利用曲線與曲線公共點為由于在公共點處有共同的切線,解得,,聯立解得的值.【詳解】解:函數的定義域為,,,設曲線與曲線公共點為,由于在公共點處有共同的切線,∴,解得,.由,可得.聯立,解得.故答案為:.【點睛】本題考查函數的導數的應用,切線方程的求法,考查轉化思想以及計算能力,是中檔題.16.1【解析】
判斷函數為偶函數,周期為2,判斷為偶函數,計算,,畫出函數圖像,根據圖像到答案.【詳解】知,函數為偶函數,,函數關于對稱。,故函數為周期為2的周期函數,且。為偶函數,,,當時,,,函數先增后減。當時,,,函數先增后減。在同一坐標系下作出兩函數在上的圖像,發現在內圖像共有1個公共點,則函數在上的零點個數為1.故答案為:.【點睛】本題考查了函數零點問題,確定函數的奇偶性,對稱性,周期性,畫出函數圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2){1,2}.【解析】
(1)求解導數,表示出,再利用的導數可求m的取值范圍;(2)表示出,結合二次函數知識求出的最小值,再結合導數及基本不等式求出的最值,從而可求正整數k的取值集合.【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設,則,所以單調遞增,又因為,所以存在,使得,設,是關于開口向上的二次函數,則,設,則,令,則,所以單調遞增,因為,所以存在,使得,即,當時,,當時,,所以在上單調遞減,在上單調遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數k的取值集合為{1,2}.【點睛】本題主要考查導數的應用,利用導數研究極值問題一般轉化為導數的零點問題,恒成立問題要逐步消去參數,轉化為最值問題求解,適當構造函數是轉化的關鍵,本題綜合性較強,難度較大,側重考查數學抽象和邏輯推理的核心素養.18.(1)(2)證明見解析【解析】
(1)求出的導數,根據導函數的性質判斷函數的單調性,再利用函數單調性解函數型不等式;(2)構造函數,利用導數判斷在區間上單調遞減,結合可得結果.【詳解】(1)若,則.設,則,所以在上單調遞減,在上單調遞增.又當時,;當時,;當時,,所以所以在上單調遞增,又,所以不等式的解集為.(2)設,再令,,在上單調遞減,又,,,,,.即【點睛】本題考查利用函數的導數來判斷函數的單調性,再利用函數的單調性來解決不等式問題,屬于較難題.19.(1);(2)【解析】
(1)零點分段解不等式即可(2)等價于,由,得不等式即可求解【詳解】(1)當時,,當時,由,解得;當時,由,解得;當時,由,解得.綜上可知,原不等式的解集為.(2).存在使得成立,等價于.又因為,所以,即.解得,結合,所以實數的取值范圍為.【點睛】本題考查絕對值不等式的解法,考查不等式恒成立及最值,考查轉化思想,是中檔題20.(1),;(2).【解析】
(1)根據題意同時利用等差、等比數列的通項公式即可求得數列和的通項公式;(2)求出數列的通項公式,再利用錯位相減法即可求得數列的前2020項的和.【詳解】(1)依題意得:,所以,所以解得設等比數列的公比為,所以又(2)由(1)知,因為①當時,②由①②得,,即,又當時,不滿足上式,.數列的前2020項的和設③,則④,由③④得:,所以,所以.【點睛】本題考查等差數列和等比數列的通項公式、性質,錯位相減法求和,考查學生的邏輯推理能力,化歸與轉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年美發師創意造型考核試卷:美發行業前沿技術與創新設計試題
- 2025年美發師(初級)實操技能考核試卷:實操項目與實操經驗
- 2025年美發師實操技能考核試卷:美發師發型設計作品創作資源與實操試題
- 2025年美發師創意造型考核試卷:美發師行業發展趨勢預測與試題
- 秘密載體銷毀管理制度
- 社區家長教育管理制度
- 對海外公司管理制度
- 少先隊規章管理制度
- 常態化規劃管理制度
- 硬件產品開發管理制度
- GB/T 10810.1-2025眼鏡鏡片第1部分:單焦和多焦
- 2024年煙臺市煙臺山醫院招聘考試真題
- 酒店前臺培訓內容
- 國開本科《人文英語3》期末機考總題庫及答案
- 2025年包養合同模板
- 《SPE固相萃取技術》課件
- 高中數學復習 導數壓軸大題歸類 (原卷版)
- 環境友好型飛機內飾-深度研究
- 《crrt低血壓的處理》課件
- GB/T 23694-2024風險管理術語
- 馬詩聽評課記錄范文
評論
0/150
提交評論