




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆廣東省名校三校高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,在平行六面體中,,,,點(diǎn)是的中點(diǎn),點(diǎn)是上的點(diǎn),且,則向量可表示為()A. B.C. D.2.在等差數(shù)列中,,則()A.6 B.3C.2 D.13.在等比數(shù)列中,,,則()A. B.或C. D.或4.給出下列判斷,其中正確的是()A.三點(diǎn)唯一確定一個(gè)平面B.一條直線和一個(gè)點(diǎn)唯一確定一個(gè)平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)5.在空間直角坐標(biāo)系中,已知點(diǎn),,則線段的中點(diǎn)坐標(biāo)與向量的模長(zhǎng)分別是()A.;5 B.;C.; D.;6.已知命題,,則p的否定是()A. B.C. D.7.已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,左焦點(diǎn)、右頂點(diǎn)和下頂點(diǎn)分別為,坐標(biāo)原點(diǎn)到直線的距離為,則的面積為()A. B.4C. D.8.已知向量,,若,則()A.1 B.C. D.29.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用10.在正三棱錐中,,且,M,N分別為BC,AD的中點(diǎn),則直線AM和CN夾角的余弦值為()A. B.C. D.11.已知是拋物線上的一點(diǎn),是拋物線的焦點(diǎn),若以為始邊,為終邊的角,則等于()A. B.C. D.12.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足下列條件:①數(shù)列是等比數(shù)列;②數(shù)列是單調(diào)遞增數(shù)列;③數(shù)列的公比滿足.請(qǐng)寫(xiě)出一個(gè)符合條件的數(shù)列的通項(xiàng)公式__________.14.雙曲線的焦點(diǎn)在圓上,圓O與雙曲線C的漸近線在第一、四象限分別交于P,Q兩點(diǎn)滿足(其中O是坐標(biāo)原點(diǎn)),則的面積是_________15.如果圓錐的底面圓半徑為1,母線長(zhǎng)為2,則該圓錐的側(cè)面積為_(kāi)__16.已知兩平行直線與間的距離為3,則C的值是________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓過(guò)點(diǎn),離心率.(1)求橢圓的方程;(2)設(shè)直線與橢圓相交于A、B兩點(diǎn),求.18.(12分)已知數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,設(shè),求數(shù)列的前n項(xiàng)和.19.(12分)如圖,已知拋物線的焦點(diǎn)為F,拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1(1)求拋物線C的方程;(2)過(guò)點(diǎn)F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點(diǎn),l2與拋物線C交于C,D兩點(diǎn),M,N分別為弦AB,CD的中點(diǎn),求|MF|·|NF|的最小值20.(12分)已知函數(shù)f(x)=x﹣lnx(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值.21.(12分)已知圓C的圓心在直線上,且圓C經(jīng)過(guò),兩點(diǎn).(1)求圓C的標(biāo)準(zhǔn)方程.(2)設(shè)直線與圓C交于A,B(異于坐標(biāo)原點(diǎn)O)兩點(diǎn),若以AB為直徑的圓過(guò)原點(diǎn),試問(wèn)直線l是否過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若否,請(qǐng)說(shuō)明理由.22.(10分)如圖,在直三棱柱中,,E、F分別是、的中點(diǎn)(1)求證:平面;(2)求證:平面
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)空間向量加法和減法的運(yùn)算法則,以及向量的數(shù)乘運(yùn)算即可求解.【詳解】解:因?yàn)樵谄叫辛骟w中,,,,點(diǎn)是的中點(diǎn),點(diǎn)是上的點(diǎn),且,所以,故選:D.2、B【解析】根據(jù)等差數(shù)列下標(biāo)性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑炔顢?shù)列,所以,故選:B3、C【解析】計(jì)算出等比數(shù)列的公比,即可求得的值.【詳解】設(shè)等比數(shù)列的公比為,則,則,所以,.故選:C.4、C【解析】根據(jù)確定平面的條件可對(duì)每一個(gè)選項(xiàng)進(jìn)行判斷.【詳解】對(duì)A,如果三點(diǎn)在同一條直線上,則不能確定一個(gè)平面,故A錯(cuò)誤;對(duì)B,如果這個(gè)點(diǎn)在這條直線上,就不能確定一個(gè)平面,故B錯(cuò)誤;對(duì)C,兩條平行直線確定一個(gè)平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個(gè)平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對(duì)D,空間兩兩相交的三條直線可確定一個(gè)平面,也可確定三個(gè)平面,故D錯(cuò)誤.故選:C5、B【解析】根據(jù)給定條件利用中點(diǎn)坐標(biāo)公式及空間向量模長(zhǎng)的坐標(biāo)表示計(jì)算作答.【詳解】因點(diǎn),,所以線段的中點(diǎn)坐標(biāo)為,.故選:B6、A【解析】直接根據(jù)全稱命題的否定寫(xiě)出結(jié)論.【詳解】命題,為全稱命題,故p的否定是:.故選:A【點(diǎn)睛】全稱量詞命題的否定是特稱(存在)量詞命題,特稱(存在)量詞命題的否定是全稱量詞命題7、C【解析】設(shè),根據(jù)題意,可知的方程為直線,根據(jù)原點(diǎn)到直線的距離建立方程,求出,進(jìn)而求出,的值,以及到直線的距離,再根據(jù)面積公式,即可求出結(jié)果.【詳解】設(shè),由題意可知,其中,所以的方程為,即所以原點(diǎn)到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.8、B【解析】由向量平行,先求出的值,再由模長(zhǎng)公式求解模長(zhǎng).【詳解】由,則,即則,所以則故選:B9、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒(méi)有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.10、B【解析】由題意可得兩兩垂直,所以以為原點(diǎn),所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解【詳解】因?yàn)椋詢蓛纱怪保砸詾樵c(diǎn),所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因?yàn)椋?因?yàn)镸,N分別為BC,AD的中點(diǎn),所以,所以,設(shè)直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B11、D【解析】設(shè)點(diǎn),取,可得,求出的值,利用拋物線的定義可求得的值.【詳解】設(shè)點(diǎn),其中,則,,取,則,可得,因?yàn)椋傻茫獾茫瑒t,因此,.故選:D.12、D【解析】根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號(hào)和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識(shí)別,此類問(wèn)題應(yīng)根據(jù)原函數(shù)的單調(diào)性來(lái)考慮導(dǎo)函數(shù)的符號(hào)與零點(diǎn)情況,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】根據(jù)題意判斷數(shù)列特征,寫(xiě)出一個(gè)符合題意的數(shù)列的通項(xiàng)公式即可.【詳解】因?yàn)閿?shù)列是等比數(shù)列,數(shù)列是單調(diào)遞增數(shù)列,數(shù)列公比滿足,所以等比數(shù)列公比,且各項(xiàng)均為負(fù)數(shù),符合題意的一個(gè)數(shù)列的通項(xiàng)公式為.故答案為:(答案不唯一)14、【解析】根據(jù)雙曲線的焦點(diǎn)在圓上可求出的值,設(shè)線段與軸的交點(diǎn)坐標(biāo)為,進(jìn)而根據(jù)求出的坐標(biāo),代入圓中,求出的值,即可求出結(jié)果.【詳解】因?yàn)殡p曲線的焦點(diǎn)在圓上,所以,設(shè)線段與軸的交點(diǎn)坐標(biāo)為,結(jié)合雙曲線與圓的對(duì)稱性可知為線段的中點(diǎn),又因?yàn)椋矗遥瑒t,又因?yàn)橹本€的方程為,所以,又因?yàn)樵趫A上,所以,又因?yàn)椋瑒t,所以,從而,故,故答案為:.15、2π【解析】由圓錐的側(cè)面積公式即可求解【詳解】由題意,圓錐底面周長(zhǎng)為2π×1=2π,又母線長(zhǎng)為2,所以圓錐的側(cè)面積故答案為:2π.16、【解析】根據(jù)兩條平行直線之間的距離公式即可得解.【詳解】?jī)善叫兄本€與間的距離為3,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意得,,再結(jié)合即可求得答案.(2)設(shè),,直接聯(lián)立方程得,再結(jié)合韋達(dá)定理,利用弦長(zhǎng)公式和點(diǎn)到線的距離公式得,點(diǎn)M到直線的距離,進(jìn)而可得.【詳解】解:(1)由題意得,,結(jié)合,解得所以橢圓的方程為:.(2)由得即,經(jīng)驗(yàn)證.設(shè),.所以,,故因?yàn)辄c(diǎn)M到直線的距離,所以.【點(diǎn)睛】本題考查直線與橢圓位置關(guān)系,橢圓的方程,弦長(zhǎng)公式等,考查運(yùn)算能力,是基礎(chǔ)題.18、(1)(2).【解析】(1)由數(shù)列的前n項(xiàng)和與通項(xiàng)公式之間的關(guān)系即可完成.(2)由錯(cuò)位相減法即可解決此類“差比”數(shù)列的求和.【小問(wèn)1詳解】由,得當(dāng)時(shí),,上下兩式相減得,,又當(dāng)時(shí),滿足上式,所以數(shù)列的通項(xiàng)公式;【小問(wèn)2詳解】由(1)可知,所以,則,上下兩式相減得,所以.19、(1)(2)8【解析】(1)由拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,即可求得拋物線的方程;(2)設(shè)直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進(jìn)而求得的坐標(biāo),得到的表達(dá)式,結(jié)合基本不等式,即可求解.【小問(wèn)1詳解】解:因?yàn)閽佄锞€C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,解得,所以拋物線C的方程為【小問(wèn)2詳解】解:由(1)可知焦點(diǎn)為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設(shè)直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設(shè)點(diǎn)A(x1,y1),B(x2,y2),則,因?yàn)镸(xM,yM)為弦AB的中點(diǎn),所以,由,得,所以點(diǎn),同理可得,所以,=,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以的最小值為20、(1)(2)極小值為,無(wú)極大值【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)的幾何意義即可求出切線方程;(2)根據(jù)導(dǎo)數(shù)的符號(hào)求出函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可得出答案.【小問(wèn)1詳解】解:,則,,即切線的斜率為0,所以曲線y=f(x)在點(diǎn)(1,f(1))處曲線的切線方程為;小問(wèn)2詳解】當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上遞減,在上遞增,函數(shù)的極小值為,無(wú)極大值.21、(1)(2)過(guò)定點(diǎn),定點(diǎn)為【解析】(1)設(shè)出圓C的標(biāo)準(zhǔn)方程,由題意列出方程從而可得答案.(2)設(shè),,將直線的方程與圓C的方程聯(lián)立,得出韋達(dá)定理,由條件可得,從而得出答案.【小問(wèn)1詳解】設(shè)圓C的標(biāo)準(zhǔn)方程為由題意可得解得,,.故圓C的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】設(shè),.聯(lián)立整理的,則,,故.因?yàn)橐訟B為直徑的圓過(guò)原點(diǎn),所以,即則,化簡(jiǎn)得.當(dāng)時(shí),直線,直線l過(guò)原點(diǎn),此時(shí)不滿足
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 化工工藝安全與環(huán)保要求測(cè)試卷
- 我的未來(lái)之旅想象作文4篇范文
- 未來(lái)的科技幻想想象作文(8篇)
- 家用電器銷售平臺(tái)合作協(xié)議
- 跨境貿(mào)易合作協(xié)議之國(guó)際貿(mào)易業(yè)務(wù)合作細(xì)節(jié)
- go與become的區(qū)別與用法:初中語(yǔ)法課教案
- 解除勞動(dòng)關(guān)系正式離職證明(5篇)
- 環(huán)境科學(xué)水污染治理技術(shù)知識(shí)梳理
- 中醫(yī)館與健康管理體系的融合發(fā)展模式
- 高管綠色經(jīng)歷對(duì)企業(yè)ESG表現(xiàn)的影響
- 2024年北京第二次高中學(xué)業(yè)水平合格考地理試卷真題(含答案詳解)
- 計(jì)算機(jī)網(wǎng)絡(luò)與信息安全(2024年版)課件全套 李全龍 第01-10章 計(jì)算機(jī)網(wǎng)絡(luò)與信息安全概述- 網(wǎng)絡(luò)安全協(xié)議與技術(shù)措施
- 廣西桂林市(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)部編版期末考試(上學(xué)期)試卷及答案
- 第八屆全國(guó)醫(yī)藥行業(yè)特有職業(yè)技能競(jìng)賽(中藥調(diào)劑員)考試題及答案
- 護(hù)士進(jìn)修手冊(cè)
- 廣東版-開(kāi)心學(xué)英語(yǔ)六年級(jí)下冊(cè)教案
- 傳感器技術(shù)-武漢大學(xué)
- 戲劇鑒賞學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 工程造價(jià)咨詢服務(wù)人員配置方案
- 濕法WFGD、CFB半干法、SDS干法脫硫工藝、控制要點(diǎn)、常見(jiàn)問(wèn)題
- 催促支付預(yù)付款的申請(qǐng)函
評(píng)論
0/150
提交評(píng)論