




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省如東中學、栟茶中學2025屆高二上數學期末復習檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,集合,則()A. B.C. D.2.已知橢圓的左、右頂點分別為,上、下頂點分別為.點為上不在坐標軸上的任意一點,且四條直線的斜率之積大于,則的離心率的取值范圍是()A. B.C. D.3.我國古代的數學名著《九章算術》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數是前一天的2倍,5天共織布5尺,請問第二天織布的尺數是()A. B.C. D.4.設等差數列前n項和是,若,則的通項公式可以是()A. B.C. D.5.設A=37+·35+·33+·3,B=·36+·34+·32+1,則A-B的值為()A.128 B.129C.47 D.06.某商場開通三種平臺銷售商品,五一期間這三種平臺的數據如圖1所示.該商場為了解消費者對各平臺銷售方式的滿意程度,用分層抽樣的方法抽取了6%的顧客進行滿意度調查,得到的數據如圖2所示.下列說法正確的是()A.樣本中對平臺一滿意的消費者人數約700B.總體中對平臺二滿意的消費者人數為18C.樣本中對平臺一和平臺二滿意的消費者總人數為60D.若樣本中對平臺三滿意消費者人數為120,則7.已知圓與圓沒有公共點,則實數a的取值范圍為()A. B.C. D.8.命題“若,則”的否命題是()A.若,則 B.若,則C.若,則 D.若,則9.若圓C:上有到的距離為1的點,則實數m的取值范圍為()A. B.C. D.10.已知兩定點和,動點在直線上移動,橢圓C以A,B為焦點且經過點P,則橢圓C的短軸的最小值為()A. B.C. D.11.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.12.2018年,倫敦著名的建筑事務所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質,如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個無蓋的正方體盒子展開圖,A,B,C,D是展開圖上的四點,BD則在正方體盒子中,AD與平面ABC所成角的正弦值為___________.14.已知雙曲線的左右焦點分別為,過點的直線交雙曲線右支于A,B兩點,若是等腰三角形,且,則的面積為___________.15.已知橢圓的左、右焦點為,過作x軸垂線交橢圓于點P,若為等腰直角三角形,則橢圓的離心率是___________.16.已知函數,則曲線在點處的切線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱柱中,平面,,,,點,分別在棱和棱上,且,,點為棱的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.18.(12分)已知函數(1)求的圖象在點處的切線方程;(2)求在上的最大值與最小值19.(12分)在平面直角坐標系中,設點,直線,點P在直線l上移動,R是線段PF與y軸的交點,也是PF的中點.,(1)求動點Q的軌跡的方程E;(2)過點F作兩條互相垂直的曲線E的弦AB、CD,設AB、CD的中點分別為M,N.求直線MN過定點R的坐標20.(12分)如圖,在四棱錐P-ABCD中,底面四邊形ABCD為直角梯形,,,,O為BD的中點,,(1)證明:平面ABCD;(2)求平面PAD與平面PBC所成銳二面角的余弦值21.(12分)已知函數在處有極值.(1)求常數a,b的值;(2)求函數在上的最值.22.(10分)已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,設,判斷是否為定值?若是,求出該定值;若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據題意先求出,再利用交集定義即可求解.【詳解】全集,集合,則,故故選:B2、A【解析】設,求得,得到,求得,結合,即可求解.【詳解】由橢圓的方程,可得,設,則,由,因為四條直線的斜率之積大于,即,所以,則離心率,又因為橢圓離心率,所以橢圓的離心率的取值范圍是.故選:A.3、C【解析】根據等比數列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數成等比數列,設其首項為,公比為,則,解得所以第二天織布的尺數為.故選:C4、D【解析】根據題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設等差數列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.5、A【解析】先化簡A-B,發現其結果為二項式展開式,然后計算即可【詳解】A-B=37-·36+·35-·34+·33-·32+·3-1=故選A.【點睛】本題主要考查了二項式定理的運用,關鍵是通過化簡能夠發現其結果在形式上滿足二項式展開式,然后計算出結果,屬于基礎題6、C【解析】根據扇形圖和頻率分布直方圖判斷.【詳解】對于A:樣本中對平臺一滿意的人數為,故選項A錯誤;對于B:總體中對平臺二滿意的人數約為,故選項B錯誤;對于C:樣本中對平臺一和平臺二滿意的總人數為:,故選項C正確:對于D:對平臺三的滿意率為,所以,故選項D錯誤故選:C7、B【解析】求出圓、的圓心和半徑,再由兩圓沒有公共點列不等式求解作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,因圓、沒有公共點,則有或,即或,又,解得或,所以實數a的取值范圍為.故選:B8、B【解析】根據原命題的否命題是條件結論都要否定【詳解】解:因為原命題的否命題是條件結論都要否定所以命題“若,則”的否命題是若,則;故選:B9、C【解析】利用圓與圓的位置關系進行求解即可.【詳解】將圓C的方程化為標準方程得,所以.因為圓C上有到的距離為1的點,所以圓C與圓:有公共點,所以因為,所以,解得,故選:C10、B【解析】根據題意,點關于直線對稱點的性質,以及橢圓的定義,即可求解.【詳解】根據題意,設點關于直線的對稱點,則,解得,即.根據橢圓的定義可知,,當、、三點共線時,長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.11、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A12、A【解析】設出雙曲線的方程,根據已知條件列出方程組即可求解.【詳解】設雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】先復原正方體,再構造線面角后可求正弦值.【詳解】復原后的正方體如圖所示,設所在面的正方形的余下的一個頂點為,連接,則平面,故為AD與平面ABC所成角,而,故為AD與平面ABC所成角的正弦值為.故答案為:.14、【解析】根據題意可知,,再結合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:15、##【解析】以為等腰直角三角形列方程組可得之間的關系式,進而求得橢圓的離心率.【詳解】橢圓的左、右焦點為,點P由為等腰直角三角形可知,,即可化為,故或(舍)故答案為:16、【解析】先求出,求出導函數及,進而求出切線方程.【詳解】∵,∴,又,∴在處的切線方程為,即故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)構建空間直角坐標系,由已知確定相關點坐標,進而求的方向向量、面的法向量,并應用坐標計算空間向量的數量積,即可證結論.(2)求的方向向量,結合(1)中面的法向量,應用空間向量夾角的坐標表示求直線與平面所成角的正弦值.【小問1詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標系,如圖所示,可得:,,,,,,,.∴,,,設為面的法向量,則,令得,∴,即,∴平面;【小問2詳解】由(1)知:,為面的一個法向量,設與平面所成角為,則,∴直線與平面所成角的正弦值為.18、(1);(2)最大值與最小值分別為與【解析】(1)根據導數的幾何意義求出切線的斜率即可求出結果;(2)利用導數研究函數的單調性,進而結合函數的單調性即可求出最值.【詳解】(1)因為,所以所以所以的圖象在點處的切線方程為,即(2)由(1)知令,則;令,則所以在上單調遞減,在上單調遞增.所以又,所以所以在上的最大值與最小值分別為與19、(1)(2)【解析】(1)由圖中的幾何關系可知,故可知動點Q的軌跡E是以F為焦點,l為準線的拋物線,但不能和原點重合,即可直接寫出拋物線的方程;(2)設出直線AB的方程,把點、的坐標代入拋物線方程,兩式作差后,再利用中點坐標公式求出點M的坐標,同理求出點的坐標,即可求出直線MN的方程,最后可求出直線MN過哪一定點.【小問1詳解】∵直線的方程為,點R是線段FP的中點且,∴RQ是線段FP的垂直平分線,∵,∴是點Q到直線l的距離,∵點Q在線段FP的垂直平分線,∴,則動點Q的軌跡E是以F為焦點,l為準線的拋物線,但不能和原點重合,即動點Q軌跡的方程為.【小問2詳解】設,,由題意直線AB斜率存在且不為0,設直線AB的方程為,由已知得,兩式作差可得,即,則,代入可得,即點M的坐標為,同理設,,直線的方程為,由已知得,兩式作差可得,即,則,代入可得,即點的坐標為,則直線MN的斜率為,即方程為,整理得,故直線MN恒過定點.20、(1)見解析(2)【解析】(1)連接,利用勾股定理證明,又可證明,根據線面垂直的判定定理證明即可;(2)建立合適的空間直角坐標系,求出所需點的坐標和向量的坐標,然后利用待定系數法求出平面和平面的法向量,由向量的夾角公式求解即可小問1詳解】證明:如圖,連接,在中,由,可得,因為,,所以,,因為,,,則,故,因為,,,平面,則平面;【小問2詳解】解:由(1)可知,,,兩兩垂直,以點為坐標原點,建立空間直角坐標系如圖所示,則,0,,,0,,,0,,,2,,,0,,所以,則,,,又,設平面的法向量為,則,令,則,,故,設平面的法向量為,因為,所以,令,則,,故,所以,故平面與平面所成銳二面角的余弦值為21、(1);(2)最大值為-1,最值為-5.【解析】(1)根據給定條件結合函數的導數建立方程,求解方程并驗證作答.(2)利用導數探討函數在上的單調性即可計算作答.【小問1詳解】依題意:,則,解得:,當時,,當時,,當時,,則函數在處有極值,所以.【小問2詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年國家科技進步獎
- 老人安全合同協議書范本
- 酒店團住合同協議書
- 大連汽車線束項目投資分析報告模板參考
- 全屋裝修合同協議書
- 家具安裝合作合同協議書
- 2025年智能安防監控設備的低照度成像與智能分析技術升級項目可行性研究報告
- 買賣鴿子合同協議書范本
- 2025秋五年級語文上冊統編版-【語文園地二】交互課件
- 如何簽訂裝修合同協議書
- 《鐵路軌道維護》課件-扣件螺栓涂油作業
- 初三班級學生中考加油家長會課件
- 多圖中華民族共同體概論課件第十一講 中華一家與中華民族格局底定(清前中期)根據高等教育出版社教材制作
- 高三物理一輪復習策略及建議.PPT
- 光伏發電項目并網調試方案
- 面試考核評分表
- 地溝更換管線專項施工方案完整
- 公司組織架構圖模板可編輯
- 麥克維爾螺桿冷水機組維修保養手冊
- 《音樂樂理常識大全》ppt課件
- 北京市總工會職工互助保障
評論
0/150
提交評論