2025屆新課標全國卷數學高三第一學期期末質量跟蹤監視試題含解析_第1頁
2025屆新課標全國卷數學高三第一學期期末質量跟蹤監視試題含解析_第2頁
2025屆新課標全國卷數學高三第一學期期末質量跟蹤監視試題含解析_第3頁
2025屆新課標全國卷數學高三第一學期期末質量跟蹤監視試題含解析_第4頁
2025屆新課標全國卷數學高三第一學期期末質量跟蹤監視試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆新課標全國卷數學高三第一學期期末質量跟蹤監視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.2.函數的圖象的大致形狀是()A. B. C. D.3.設為自然對數的底數,函數,若,則()A. B. C. D.4.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.5.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.46.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸7.已知i為虛數單位,則()A. B. C. D.8.波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.9.甲在微信群中發了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領到整數元,且每人至少領到1元,則乙獲得“最佳手氣”(即乙領到的錢數多于其他任何人)的概率是()A. B. C. D.10.已知函數,,且在上是單調函數,則下列說法正確的是()A. B.C.函數在上單調遞減 D.函數的圖像關于點對稱11.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.812.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若滿足,且方向相同,則__________.14.已知向量,若向量與共線,則________.15.(5分)已知函數,則不等式的解集為____________.16.已知函數在上僅有2個零點,設,則在區間上的取值范圍為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在最新公布的湖南新高考方案中,“”模式要求學生在語數外3門全國統考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規則轉換后計入高考總分.相應地,高校在招生時可對特定專業設置具體的選修科目要求.雙超中學高一年級有學生1200人,現從中隨機抽取40人進行選科情況調查,用數字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規定:每個選修班最多編排50人且盡量滿額編班,每位老師執教2個選修班(當且僅當一門科目的選課班級總數為奇數時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數是否需要調整?如果需要調整,各需增加或減少多少人?(2)請創建列聯表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現從雙超中學高一新生中隨機抽取3人,設具備高校專業報名資格的人數為,用樣本的頻率估計概率,求的分布列與期望.18.(12分)如圖,過點且平行與x軸的直線交橢圓于A、B兩點,且.(1)求橢圓的標準方程;(2)過點M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點E、F,求證:是定值.19.(12分)某校共有學生2000人,其中男生900人,女生1100人,為了調查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據收集100人的樣本數據,得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數據中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87920.(12分)已知數列中,a1=1,其前n項和為,且滿足.(1)求數列的通項公式;(2)記,若數列為遞增數列,求λ的取值范圍.21.(12分)已知正項數列的前項和.(1)若數列為等比數列,求數列的公比的值;(2)設正項數列的前項和為,若,且.①求數列的通項公式;②求證:.22.(10分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調遞增,且時,.當時,,在上單調遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數與方程的關系,考查函數的單調性與最值,轉化的數學思想,屬于中檔題.2、B【解析】

根據函數奇偶性,可排除D;求得及,由導函數符號可判斷在上單調遞增,即可排除AC選項.【詳解】函數易知為奇函數,故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數,所以在上單調遞增,故排除A,C.故選:B【點睛】本題考查了根據函數解析式判斷函數圖象,導函數性質與函數圖象關系,屬于中檔題.3、D【解析】

利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數值的計算,屬于基礎題.4、D【解析】

求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設,則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯立方程組,合理利用根與系數的關系和中點坐標公式是解答的關鍵,著重考查了推理與運算能力.5、C【解析】

設直線l的方程為x=y,與拋物線聯立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y,并與y2=2px聯立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.6、A【解析】

根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.7、A【解析】

根據復數乘除運算法則,即可求解.【詳解】.故選:A.【點睛】本題考查復數代數運算,屬于基礎題題.8、D【解析】

求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.9、B【解析】

將所有可能的情況全部枚舉出來,再根據古典概型的方法求解即可.【詳解】設乙,丙,丁分別領到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎題型.10、B【解析】

根據函數,在上是單調函數,確定,然后一一驗證,A.若,則,由,得,但.B.由,,確定,再求解驗證.C.利用整體法根據正弦函數的單調性判斷.D.計算是否為0.【詳解】因為函數,在上是單調函數,所以,即,所以,若,則,又因為,即,解得,而,故A錯誤.由,不妨令,得由,得或當時,,不合題意.當時,,此時所以,故B正確.因為,函數,在上是單調遞增,故C錯誤.,故D錯誤.故選:B【點睛】本題主要考查三角函數的性質及其應用,還考查了運算求解的能力,屬于較難的題.11、B【解析】

建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.12、C【解析】

求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由向量平行坐標表示計算.注意驗證兩向量方向是否相同.【詳解】∵,∴,解得或,時,滿足題意,時,,方向相反,不合題意,舍去.∴.故答案為:1.【點睛】本題考查向量平行的坐標運算,解題時要注意驗證方向相同這個條件,否則會出錯.14、【解析】

計算得到,根據向量平行計算得到答案.【詳解】由題意可得,因為與共線,所以有,即,解得.故答案為:.【點睛】本題考查了根據向量平行求參數,意在考查學生的計算能力.15、【解析】

易知函數的定義域為,且,則是上的偶函數.由于在上單調遞增,而在上也單調遞增,由復合函數的單調性知在上單調遞增,又在上單調遞增,故知在上單調遞增.令,知,則不等式可化為,即,可得,又,是偶函數,可得,由在上單調遞增,可得,則,解得,故不等式的解集為.16、【解析】

先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)不需調整(2)列聯表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(3)詳見解析【解析】

(1)可估計高一年級選修相應科目的人數分別為120,2,推理得對應開設選修班的數目分別為15,1.推理知生物科目需要減少4名教師,化學科目不需要調整.(2)根據列聯表計算觀測值,根據臨界值表可得結論.(3)經統計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.用頻率估計概率,則,根據二項分布概率公式可得分布列和數學期望.【詳解】(1)經統計可知,樣本40人中,選修化學、生物的人數分別為24,11,則可估計高一年級選修相應科目的人數分別為120,2.根據每個選修班最多編排50人,且盡量滿額編班,得對應開設選修班的數目分別為15,1.現有化學、生物科目教師每科各8人,根據每位教師執教2個選修班,當且僅當一門科目的選課班級總數為奇數時,允許這門科目的一位教師執教一個班的條件,知生物科目需要減少4名教師,化學科目不需要調整.(2)根據表格中的數據進行統計后,制作列聯表如下:選物理不選物理合計選化學19524不選化學61016合計251540則,有的把握判斷學生”選擇化學科目”與“選擇物理科目”有關.(3)經統計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.用頻率估計概率,則,分布列如下:01230.3430.4410.1890.021數學期望為.【點睛】本題主要考查了離散型隨機變量的期望與方差,考查獨立性檢驗,意在考查學生對這些知識的理解掌握水平和分析推理能力.18、(1);(2)證明見解析.【解析】

(1)由題意求得的坐標,代入橢圓方程求得,由此求得橢圓的標準方程.(2)設出直線的方程,聯立直線的方程和橢圓方程,可得關于的一元二次方程,設出的坐標,分別求出直線與直線的方程,從而求得兩點的縱坐標,利用根與系數關系可化簡證得為定值.【詳解】(1)由已知可得:,代入橢圓方程得:橢圓方程為;(2)設直線CD的方程為,代入,得:設,,則有,則AC的方程為,令,得BD的方程為,令,得,證畢.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查計算能力,是難題.19、(1)男生人數為人,女生人數55人.(2)列聯表答案見解析,有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【解析】

(1)求出男女比例,按比例分配即可;(2)根據題意結合頻率分布表,先求出二聯表中數值,再結合公式計算,利用表格數據對比判斷即可【詳解】(1)因為男生人數:女生人數=900:1100=9:11,所以男生人數為,女生人數100﹣45=55人,(2)由頻率頻率直方圖可知學生每周平均體育鍛煉時間超過2小時的人數為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時間超過2小時的女生人數為37人,聯表如下:男生女生總計每周平均體育鍛煉時間不超過2小時71825每周平均體育鍛煉時間超過2小時383775總計4555100因為3.892>3.841,所以有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【點睛】本題考查分層抽樣,獨立性檢驗,熟記公式,正確計算是關鍵,屬于中檔題.20、(1)(2)【解析】

(1)項和轉換可得,繼而得到,可得解;(2)代入可得,由數列為遞增數列可得,,令,可證明為遞增數列,即,即得解【詳解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵數列為遞增數列,∴,即.令,即.∴為遞增數列,∴,即的取值范圍為.【點睛】本題考查了數列綜合問題,考查了項和轉換,數列的單調性,最值等知識點,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.21、(1);(2)①;②詳見解析.【解析】

(1)依題意可表示,,相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論