2025屆四川省成都鹽道街中學三高二上數學期末綜合測試試題含解析_第1頁
2025屆四川省成都鹽道街中學三高二上數學期末綜合測試試題含解析_第2頁
2025屆四川省成都鹽道街中學三高二上數學期末綜合測試試題含解析_第3頁
2025屆四川省成都鹽道街中學三高二上數學期末綜合測試試題含解析_第4頁
2025屆四川省成都鹽道街中學三高二上數學期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆四川省成都鹽道街中學三高二上數學期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》第三章“衰分”介紹比例分配問題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(即百分比)為“衰分比”.如:甲、乙、丙、丁分別分得,,,,遞減的比例為,那么“衰分比”就等于,今共有糧石,按甲、乙、丙、丁的順序進行“衰分”,已知乙分得石,甲、丙所得之和為石,則“衰分比”為()A. B.C. D.2.橢圓的長軸長為()A. B.C. D.3.已知等差數列的前項和為,,公差,.若取得最大值,則的值為()A.6或7 B.7或8C.8或9 D.9或104.已知,,,則最小值是()A.10 B.9C.8 D.75.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數據不清楚,那么8位員工月工資的中位數不可能是()A.5800 B.6000C.6200 D.64006.若復數滿足,則復數對應的點的軌跡圍成圖形的面積等于()A. B.C. D.7.已知等比數列的前3項和為3,,則()A. B.4C. D.18.已知圓和橢圓.直線與圓交于、兩點,與橢圓交于、兩點.若時,的取值范圍是,則橢圓的離心率為()A. B.C. D.9.在三棱錐中,平面,,,,Q是邊上的一動點,且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.10.直線的傾斜角大小為()A. B.C. D.11.已知F是拋物線x2=y的焦點,A、B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到x軸的距離為()A. B.C.1 D.12.若且,則下列不等式中一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線表示焦點在軸上的雙曲線,則符合條件的的一個整數值為______.14.在等比數列中,已知,則__________15.已知關于的不等式恒成立,則實數的取值范圍是___________.16.命題“若實數a,b滿足,則且”是_______命題(填“真”或“假”).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某企業(yè)為響應“安全生產”號召,將全部生產設備按設備安全系數分為A,兩個等級,其中等設備安全系數低于A等設備.企業(yè)定時對生產設備進行檢修,并將部分等設備更新成A等設備.據統計,2020年底該企業(yè)A等設備量已占全體設備總量的30%.從2021年開始,企業(yè)決定加大更新力度,預計今后每年將16%的等設備更新成A等設備,與此同時,4%的A等設備由于設備老化將降級成等設備.(1)在這種更新制度下,在將來的某一年該企業(yè)的A等設備占全體設備的比例能否超過80%?請說明理由;(2)至少在哪一年底,該企業(yè)的A等設備占全體設備的比例超過60%.(參考數據:,,)18.(12分)已知直線過點,且其傾斜角是直線的傾斜角的(1)求直線的方程;(2)若直線與直線平行,且點到直線的距離是,求直線的方程19.(12分)已知橢圓:的四個頂點組成的四邊形的面積為,且經過點.(1)求橢圓的方程;(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于,兩點,與交于點,四邊形和的面積分別為,,求的最大值.20.(12分)已知雙曲線的左焦點為,到的一條漸近線的距離為1.直線與交于不同的兩點,,當直線經過的右焦點且垂直于軸時,.(1)求的方程;(2)是否存在軸上的定點,使得直線過點時,恒有?若存在,求出點的坐標;若不存在,請說明理由.21.(12分)設等比數列的前項和為,且()(1)求數列的通項公式;(2)在與之間插入個實數,使這個數依次組成公差為的等差數列,設數列的前項和為,求證:22.(10分)已知橢圓M:的離心率為,左頂點A到左焦點F的距離為1,橢圓M上一點B位于第一象限,點B與點C關于原點對稱,直線CF與橢圓M的另一交點為D(1)求橢圓M的標準方程;(2)設直線AD的斜率為,直線AB的斜率為.求證:為定值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據題意,設衰分比為,甲分到石,,然后可得和,解出、的值即可【詳解】根據題意,設衰分比為,甲分到石,,又由今共有糧食石,按甲、乙、丙、丁的順序進行“衰分”,已知乙分得90石,甲、丙所得之和為164石,則,,解得:,,故選:A2、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長軸長為.故選:D.3、B【解析】根據題意可知等差數列是,單調遞減數列,其中,由此可知,據此即可求出結果.【詳解】在等差數列中,所以,所以,即,又等差數列中,公差,所以等差數列是單調遞減數列,所以,所以等差數列的前項和為取得最大值,則的值為7或8.故選:B.4、B【解析】利用題設中的等式,把的表達式轉化成展開后,利用基本不等式求得的最小值【詳解】∵,,,∴=,當且僅當,即時等號成立故選:B5、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當另外兩名員工的工資都小于5300時,中位數為(5300+5500)÷2=5400,當另外兩名員工的工資都大于5300時,中位數為(6100+6500)÷2=6300,∴8位員工月工資的中位數的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數不可能是6400.本題選擇D選項.6、D【解析】利用復數的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復數滿足,表示復數對應的點的軌跡是以點為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D7、D【解析】設等比數列公比為,由已知結合等比數列的通項公式可求得,,代入即可求得結果.【詳解】設等比數列的公比為,由,得即,又,即又,,解得又等比數列的前3項和為3,故,即,解得故選:D8、C【解析】由題設,根據圓與橢圓的對稱性,假設在第一象限可得,結合已知有,進而求橢圓的離心率.【詳解】由題設,圓與橢圓的如下圖示:又時,的取值范圍是,結合圓與橢圓的對稱性,不妨假設在第一象限,∴從0逐漸增大至無窮大時,,故,∴故選:C.9、C【解析】由平面,直線與平面所成角的最大時,最小,也即最小,,由此可求得,從而得,得長,然后取外心,作,取H為的中點,使得,則易得,求出的長即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點,使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點睛】本題考查求球的表面積,解題關鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上10、B【解析】將直線方程變?yōu)樾苯厥剑鶕甭逝c傾斜角關系可直接求解.【詳解】由直線可得,所以,設傾斜角為,則因為所以故選:B11、B【解析】根據拋物線的方程求出準線方程,利用拋物線的定義拋物線上的點到焦點的距離等于到準線的距離,列出方程求出,的中點縱坐標,求出線段的中點到軸的距離【詳解】解:拋物線的焦點準線方程,設,,,解得,線段的中點縱坐標為,線段的中點到軸的距離為,故選:B【點睛】本題考查解決拋物線上的點到焦點的距離問題,利用拋物線的定義將到焦點的距離轉化為到準線的距離,屬于基礎題12、D【解析】根據不等式的性質即可判斷.【詳解】對于A,若,則不等式不成立;對于B,若,則不等式不成立;對于C,若均為負值,則不等式不成立;對于D,不等號的兩邊同乘負值,不等號的方向改變,故正確;故選:D【點睛】本題主要考查不等式的性質,需熟練掌握性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、.(答案不唯一)【解析】給出一個符合條件的值即可.【詳解】當時,曲線表示焦點在軸上的雙曲線,故答案為:.(答案不唯一)14、32【解析】根據已知求出公比即可求出答案.【詳解】設等比數列的公比為,則,則,所以.故答案為:32.15、【解析】參變分離,可得,設,求導分析單調性,可得,即得解【詳解】因為,所以不等式可化為,設,則,設,由于故在上單調遞增,且,則當時,,單調遞減;當時,,單調遞增,所以,則,即.故答案為:16、假【解析】列舉特殊值,判斷真假命題.【詳解】當時,,所以,命題“若實數a,b滿足,則且”是假命題.故答案為:假三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)A等設備量不可能超過生產設備總量的80%,理由見解析;(2)在2025年底實現A等設備量超過生產設備總量的60%.【解析】(1)根據題意表示出2020年開始,經過年后A等設備量占總設備量的百分比為,求出,根據的范圍進行判斷;(2)令>即可求解.【小問1詳解】記該企業(yè)全部生產設備總量為“1”,2020年開始,經過年后A等設備量占總設備量的百分比為,則經過1年即2021年底該企業(yè)A等設備量,,可得,又所以數列是以為首項,公比為的等比數列,可得,所以,顯然有,所以A等設備量不可能超過生產設備總量的80%.【小問2詳解】由,得.因為單調遞減,又,,所以在2025年底實現A等設備量超過生產設備總量的60%.18、(1);(2)或【解析】(1)先求得直線的傾斜角,由此求得直線的傾斜角和斜率,進而求得直線的方程;(2)設出直線的方程,根據點到直線的距離列方程,由此求解出直線的方程【詳解】解(1)直線的傾斜角為,∴直線的傾斜角為,斜率為,又直線過點,∴直線的方程為,即;(2)設直線的方程為,則點到直線的距離,解得或∴直線的方程為或19、(1)(2)【解析】(1)因為在橢圓上,所以,又因為橢圓四個頂點組成的四邊形的面積為,所以,解得,所以橢圓的方程為(2)由(1)可知,設,則當時,,所以,直線的方程為,即,由得,則,,,又,所以,由,得,所以,所以,當,直線,,,,,所以當時,.點睛:在圓錐曲線中研究最值或范圍問題時,若題目的條件和結論能體現一種明確的函數關系,則可首先建立目標函數,再求這個函數的最值.在利用代數法解決最值與范圍問題時常從以下方面考慮:①利用判別式來構造不等關系,從而確定參數的取值范圍;②利用已知參數的范圍,求新參數的范圍,解這類問題的關鍵是在兩個參數之間建立等量關系;③利用隱含或已知的不等關系建立不等式,從而求出參數的取值范圍.20、(1);(2)存在,理由見解析.【解析】(1)根據題意,列出的方程組,解得,則橢圓方程得解;(2)假設存在點滿足題意,設出直線的方程,聯立雙曲線方程,利用韋達定理以及,即可求解.【小問1詳解】雙曲線的左焦點,其中一條漸近線,則;對雙曲線,令,解得,則,解得,故雙曲線方程為:.小問2詳解】根據(1)中所求可知,假設存在軸上的點滿足題意,若直線的斜率不為零,則設其方程為,聯立雙曲線方程,可得,則,即,此時直線與雙曲線交于兩點,則,則,即,即,則,此時滿足題意;若直線的斜率為零,且過點,此時,滿足題意.綜上所述,存在軸上的一點滿足.【點睛】本題考察雙曲線方程的求解,以及雙曲線中存在某點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論