山西西安博愛國際學校2025屆數學高二上期末教學質量檢測模擬試題含解析_第1頁
山西西安博愛國際學校2025屆數學高二上期末教學質量檢測模擬試題含解析_第2頁
山西西安博愛國際學校2025屆數學高二上期末教學質量檢測模擬試題含解析_第3頁
山西西安博愛國際學校2025屆數學高二上期末教學質量檢測模擬試題含解析_第4頁
山西西安博愛國際學校2025屆數學高二上期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西西安博愛國際學校2025屆數學高二上期末教學質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,AC與BD的交點為O,點M在上,且,則下列向量中與相等的向量是()A. B.C. D.2.已知A,B,C,D是同一球面上的四個點,其中是正三角形,平面,,則該球的表面積為()A. B.C. D.3.關于的不等式的解集為,則關于的不等式的解集為A. B.C. D.4.函數在(0,e]上的最大值為()A.-1 B.1C.0 D.e5.下列說法錯誤的是()A.“若,則”的逆否命題是“若,則”B.“”的否定是”C.“是"”的必要不充分條件D.“或是"”的充要條件6.已知拋物線y2=4x的焦點為F,定點,M為拋物線上一點,則|MA|+|MF|的最小值為()A.3 B.4C.5 D.67.若隨機事件滿足,,,則事件與的關系是()A.互斥 B.相互獨立C.互為對立 D.互斥且獨立8.直線(t為參數)被圓所截得的弦長為()A. B.C. D.9.在流行病學中,基本傳染數是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數.一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設某種傳染病的基本傳染數,平均感染周期為4天,那么感染人數超過1000人大約需要()(初始感染者傳染個人為第一輪傳染,這個人每人再傳染個人為第二輪傳染)A.20天 B.24天C.28天 D.32天10.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進行核酸檢測,人員甲、乙均被檢測.設命題為“甲核酸檢測結果為陰性”,命題為“乙核酸檢測結果為陰性”,則命題“至少有一位人員核酸檢測結果不是陰性”可表示為()A. B.C. D.11.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組的可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.12.設命題甲:,命題乙:直線與直線平行,則()A.甲是乙的充分不必要條件 B.甲是乙的必要不充分條件C.甲是乙的充要條件 D.甲是乙的既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則______14.設f(x)=xlnx,若f′(x0)=2,則x0=________15.已知,且,則的最小值為____________16.設等差數列{an}的前n項和為Sn,且S2020>0,S2021<0,則當n=_____________時,Sn最大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓上的點到左、右焦點、的距離之和為4,且右頂點A到右焦點的距離為1.(1)求橢圓的方程;(2)直線與橢圓交于不同兩點,,記的面積為,當時求的值.18.(12分)已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.(1)求圓的方程;(2)過點的直線與圓交于兩點在軸上方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.19.(12分)設圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點20.(12分)自我國爆發新冠肺炎疫情以來,各地醫療單位都加緊了醫療用品的生產.某醫療器械廠統計了口罩生產車間每名工人的生產速度,并將所得數據分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數列,第五組與第二組的頻率相等(1)估計口罩生產車間工人生產速度的中位數(結果寫成分數的形式);(2)為了解該車間工人生產速度是否與他們的工作經驗有關,現從車間所有工人中隨機抽樣調查了5名工人的生產速度以及他們的工齡(參加工作的年限),數據如下表:工齡x(單位:年)4681012生產速度y(單位:件/小時)4257626267根據上述數據求每名工人的生產速度y關于他的工齡x的回歸方程,并據此估計該車間某位有16年工齡的工人的生產速度附:回歸方程中斜率和截距的最小二乘估計公式為:,21.(12分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準線與x軸的交點D為圓心且與直線l相切的圓的方程22.(10分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標;如果不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據平行六面體的幾何特點,結合空間向量的線性運算,即可求得結果.【詳解】因為平行六面體中,點M在上,且故可得故選:D.2、C【解析】由題意畫出幾何體的圖形,把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C3、B【解析】設,解集為所以二次函數圖像開口向下,且與交點為,由韋達定理得所以的解集為,故選B.4、A【解析】對函數求導,然后求出函數的單調區間,從而可求出函數的最大值【詳解】由,得,當時,,當,,所以在上單調遞增,在上單調遞減,所以當時,取得最大值,故選:A5、C【解析】利用逆否命題、命題的否定、充分必要性的概念逐一判斷即可.【詳解】對于A,“若,則”的逆否命題是“若,則”,正確;對于B,“”的否定是”,正確;對于C,“”等價于“或,∴“是"”的充分不必要條件,錯誤;對于D,“或是"”的充要條件,正確.故選:C6、B【解析】作出圖象,過點M作準線的垂線,垂足為H,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,求解即可【詳解】過點M作準線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉化為|MA|+|MH|的最小值,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,其最小值為.故選:B7、B【解析】利用獨立事件,互斥事件和對立事件的定義判斷即可【詳解】解:因為,,又因為,所以有,所以事件與相互獨立,不互斥也不對立故選:B.8、C【解析】求得直線普通方程以及圓的直角坐標方程,利用弦長公式即可求得結果.【詳解】因為直線的參數方程為:(t為參數),故其普通方程為,又,根據,故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.9、B【解析】根據題意列出方程,利用等比數列的求和公式計算n輪傳染后感染的總人數,得到指數方程,求得近似解,然后可得需要的天數.【詳解】感染人數由1個初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數為,經過n輪傳染,總共感染人數為:即,解得,所以感染人數由1個初始感染者增加到1000人大約需要24天,故選:B【點睛】等比數列基本量的求解是等比數列中的一類基本問題,解決這類問題的關鍵在于熟練掌握等比數列的有關公式并能靈活運用,尤其需要注意的是,在使用等比數列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程10、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結果為陰性”,則命題為“甲核酸檢測結果不是陰性”;命題為“乙核酸檢測結果為陰性”,則命題為“乙核酸檢測結果不是陰性”.故命題“至少有一位人員核酸檢測結果不是陰性”可表示為.故選D.11、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A12、A【解析】根據充分條件和必要條件的定義,結合兩直線平行的性質進行求解即可.【詳解】當時,直線的方程為,直線方程為,此時,直線與直線平行,即甲乙;直線和直線平行,則,解得或,即乙甲;則甲是乙的充分不必要條件.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據導數的定義求解即可【詳解】由,得,所以,故答案為:14、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e15、16【解析】根據,且,利用“1”的代換將,轉化為,再利用基本不等式求解.【詳解】因為,且,所以,當且僅當,,即時,取等號.所以的最小值為16.故答案為:16【點睛】本題主要考查基本不等式求最值,還考查了運算求解的能力,屬于基礎題.16、1010【解析】先由S2020>0,S2021<0,判斷出,,即可得到答案.【詳解】等差數列{an}的前n項和為,所以,因為1+2020=1010+1011,所以,所以.,所以,所以當n=1010時,Sn最大.故答案為:1010.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據題意得到,,再根據求解即可.(2)首先設,,再根據求解即可.【小問1詳解】由題意,,因為右頂點到右焦點的距離為,即,所以,則,所以橢圓的標準方程為.【小問2詳解】設,,且根據橢圓的對稱性得,聯立方程組,整理得,解得,因為的面積為3,可得,解得.18、(1);(2)存在,.【解析】(1)設出圓心,根據圓心到直線距離等于半徑列方程求出的值可得圓心坐標,進而可得圓的方程;(2)由題可設直線的方程為,與圓的方程聯立,利用韋達定理及可得,即得.【小問1詳解】由已知可設圓心,則,解得或(舍).所以圓.【小問2詳解】由題可設直線的方程為,由,得到:顯然成立,所以.①若軸平分,則,所以:,整理得:,將①代入整理得對任意的恒成立,則.∴存在點為時,使得軸平分.19、(1)與半徑相等,(2)證明見解析【解析】(1)依據橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設而不求法把條件轉化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當直線MN斜率不存在時,設直線方程為,則,,,,則,∴,此時直線MN的方程為當直線MN斜率存在時,設直線方程為:,與橢圓方程聯立:,得,設,,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數形結合是數學解題中常用的思想方法,數形結合的思想可以使某些抽象的數學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數學問題的本質;另外,由于使用了數形結合的方法,很多問題便迎刃而解,且解法簡捷。20、(1)(2)80件/小時【解析】(1)先利用等差數列的通項公式和頻率分布直方圖各矩形的面積之和為1求出各組頻率,再利用頻率分布直方圖求中位數;(2)先求出、,利用最小二乘法求出回歸直線方程,再進行預測其生產速度.【小問1詳解】解:設前4組的頻率分別為,,,,公差為,由頻率分布直方圖,得,即,解得,則,,所以中位數為.【小問2詳解】解:由題意,得,,由所給公式,得,,所以回歸直線方程為,則當時,,即估計該車間某位有16年工齡的工人的生產速度為80件/小時.21、(1);(2)【解析】(1)首先表示出直線l的方程,再聯立直線與拋物線方程,消去,列出韋達定理,再根據焦點弦公式計算可得;(2)由(1)可得,再利用點到直線的距離求出半徑,即可求出圓的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論