




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西省南昌市東湖區(qū)第十中學數(shù)學高二上期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.362.某公司有1000名員工,其中:高層管理人員為50名,屬于高收入者;中層管理人員為150名,屬于中等收入者;一般員工為800名,屬于低收入者.要對這個公司員工的收入情況進行調查,欲抽取100名員工,應當抽取的一般員工人數(shù)為()A.100 B.15C.80 D.503.在平面直角坐標系中,雙曲線的右焦點為,過雙曲線上一點作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.4.過拋物線C:y2=4x的焦點F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.165.過點且垂直于直線的直線方程為()A. B.C. D.6.直線與圓相切,則實數(shù)等于()A.或 B.或C.3或5 D.5或37.若數(shù)列的通項公式為,則該數(shù)列的第5項為()A. B.C. D.8.已知是兩條不同的直線,是兩個不同的平面,則下列結論正確的是()A.若,則 B.若,則C若,則 D.若,則9.從直線上動點作圓的兩條切線,切點分別為、,則最大時,四邊形(為坐標原點)面積是()A. B.C. D.10.命題“,”的否定是A, B.,C., D.,11.已知直線與垂直,則為()A.2 B.C.-2 D.12.已知向量,,且,則的值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從某校隨機抽取某次數(shù)學考試100分以上(含100分,滿分150分)的學生成績,將他們的分數(shù)數(shù)據(jù)繪制成如圖所示頻率分布直方圖.若共抽取了100名學生的成績,則分數(shù)在內的人數(shù)為___________14.美學四大構件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學.素描是學習繪畫的必要一步,它包括明暗素描和結構素描,而學習幾何體結構素描是學習素描最重要的一步.某同學在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為45°的直角梯形(如圖所示),則該橢圓的離心率為_____.15.已知拋物線:,過焦點作傾斜角為的直線與交于,兩點,,在的準線上的投影分別為,兩點,則__________.16.已知函數(shù)集合,若A中有且僅有4個元素,則滿足條件的整數(shù)a的個數(shù)為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的短軸長為2,左、右焦點分別為,,過且垂直于長軸的弦長為1(1)求橢圓C的標準方程;(2)若A,B為橢圓C上位于x軸同側的兩點,且,共線,求四邊形的面積的最大值18.(12分)已知圓,直線(1)證明直線與圓C一定有兩個交點;(2)求直線與圓相交的最短弦長,并求對應弦長最短時的直線方程19.(12分)已知點P到點的距離比它到直線的距離小1.(1)求點P的軌跡方程;(2)點M,N在點P的軌跡上且位于x軸的兩側,(其中O為坐標原點),求面積的最小值.20.(12分)如圖,在四棱柱中,,,,四邊形為菱形,在平面ABCD內的射影O恰好為AD的中點,M為AB的中點.(1)求證:平面;(2)求平面與平面夾角的余弦值.21.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由22.(10分)(1)已知集合,.:,:,并且是的充分條件,求實數(shù)的取值范圍(2)已知:,,:,,若為假命題,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點睛】本題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3)注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4)處理循環(huán)結構的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.2、C【解析】按照比例關系,分層抽取.【詳解】由題意可知,所以應當抽取的一般員工人數(shù)為.故選:C3、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長相等,列式求雙曲線的離心率.【詳解】不妨設在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡得,解得(負值舍去).故選:A.4、B【解析】設出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達出,同理表達出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點F為,直線l1的方程為,則聯(lián)立后得到,設,,,則,同理設可得:,因為|k1·k2|=2,所以,當且僅當,即或時,等號成立,故選:B5、A【詳解】因為所求直線垂直于直線,又直線的斜率為,所以所求直線的斜率,所以直線方程為,即.故選:A【點睛】本題主要考查直線方程的求法,屬基礎題.6、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結果【詳解】由,得,則圓心為,半徑為2,因為直線與圓相切,所以,得,解得或,故選:C7、C【解析】直接根據(jù)通項公式,求;【詳解】,故選:C8、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C9、B【解析】分析可知當時,最大,計算出、,進而可計算得出四邊形(為坐標原點)面積.【詳解】圓的圓心為坐標原點,連接、、,則,設,則,,則,當取最小值時,,此時,,,,故,此時,.故選:B.10、C【解析】特稱命題的否定是全稱命題,并將結論加以否定,所以命題的否定為:,考點:全稱命題與特稱命題11、A【解析】利用一般式中直線垂直的系數(shù)關系列式求解.【詳解】因為直線與垂直,故選:A.12、A【解析】求出向量,的坐標,利用向量數(shù)量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、30【解析】根據(jù)頻率分布直方圖中所以小矩形面積和為1,可得a值,根據(jù)總人數(shù)和頻率,即可得答案.【詳解】因為頻率分布直方圖中所以小矩形面積和為1,所以,解得,所以分數(shù)在內的人數(shù)為.故答案為:3014、【解析】設圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故答案為:15、【解析】設,則,將直線方程與拋物線方程聯(lián)立,結合韋達定理即得.【詳解】由拋物線:可知則焦點坐標為,∴過焦點且斜率為的直線方程為,化簡可得,設,則,由可得,所以則故答案為:16、32【解析】作出的圖像,由時,不等式成立,所以,判斷出符合條件的非零整數(shù)根只有三個,即等價于時,;時,;利用數(shù)形結合,進行求解.【詳解】作出的圖像如圖所示:因為時,不等式成立,所以,符合條件的非零整數(shù)根只有三個.由可得:時,;時,;所以在y軸左側,的圖像都在的下方;在y軸右側,的圖像都在的上方;而,,,,.平移直線,由圖像可知:當時,集合A中除了0只含有1,2,3,符合題意,此時整數(shù)a可以取:-23,-22,-21……-9.一共15個;當時,集合A中除了0含有1,-1,-2,符合題意.當時,集合A中除了0只含有-1,-2,-3,符合題意,此時整數(shù)a可以取:5,6,7……20一共16個.所以整數(shù)a的值一共有15+1+16=32(個).故答案為:32【點睛】分離參數(shù)法求零點個數(shù)的問題是轉化為,分別做出和的圖像,觀察交點的個數(shù)即為零點的個數(shù).用數(shù)形結合法解決零點問題常有以下幾種類型:(1)零點個數(shù):幾個零點;(2)幾個零點的和;(3)幾個零點的積.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)2【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標準方程.(2)延長,交橢圓C于點.設出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關系,根據(jù)對稱性求得四邊形的面積的表達式,利用換元法,結合基本不等式求得四邊形的面積的最大值.【小問1詳解】由題可知,即,因為過且垂直于長軸的弦長為1,所以,所以所以橢圓C的標準方程為【小問2詳解】因為,共線,所以延長,交橢圓C于點.設,由(1)可知,可設直線的方程為聯(lián)立,消去x可得,所以,由對稱性可知設與間的距離為d,則四邊形的面積令,則.因為,當且僅當時取等號,所以,即四邊形的面積的最大值為2【點睛】在橢圓、雙曲線、拋物線中,求三角形、四邊形面積的最值問題,求解策略是:首先結合弦長公式、點到直線距離公式等求得面積的表達式;然后利用基本不等式、二次函數(shù)的性質等知識來求得最值.18、(1)證明見解析(2)答案見解析【解析】(1)由,變形為求解直線過的定點,即可得解;(2)法一:由圓心和連線與直線垂直求解;法二:由圓心到直線距離最大時求解.【小問1詳解】解:,所以,令,所以直線經(jīng)過定點,圓可變形為,因為,所以定點在圓內,所以直線和圓C相交,有兩個交點;【小問2詳解】法一:圓心為,到距離為,圓心與連線的斜率為,最短弦與圓心和的連線垂直,所以,所以最短弦長為,直線的方程為法二:圓心到直線距離:,,要求d的最大值,則,當且僅當時,d的最大值為,所以最短弦長為,直線的方程為.19、(1);(2).【解析】(1)根據(jù)給定條件可得點P到點的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設出點M,N的坐標,再結合給定條件及三角形面積定理列式,借助均值不等式計算作答.【小問1詳解】因點P到點的距離比它到直線的距離小1,顯然點P與F在直線l同側,于是得點P到點的距離等于它到直線的距離,則點P的軌跡是以F為焦點,直線為準線的拋物線,所以點P的軌跡方程是.【小問2詳解】由(1)設點,,且,因,則,解得,S,當且僅當,即時取“=”,所以面積的最小值為.【點睛】思路點睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動點的橫(縱)坐標為變量,建立函數(shù)關系求解作答.20、(1)證明見解析(2)【解析】(1)先證明,,即可證明平面;(2)建立空間直角坐標系,利用向量法求解即可.【小問1詳解】因為O為在平面ABCD內的射影,所以平面ABCD,因為平面ABCD,所以.如圖,連接BD,在中,.設CD的中點為P,連接BP,因為,,,所以,且,則.因為,所以,易知,所以.因為平面,平面,,所以平面.【小問2詳解】由(1)知平面ABCD,所以可以點O為坐標原點,以OA,,所在直線分別為x,z,以平面ABCD內過點O且垂直于OA的直線為y軸,建立如圖所示的空間直角坐標系,則,,,,,所以,,,,設平面的法向量為,,,則可取平面的一個法向量為.設平面的法向量為,,,則令,得平面的一個法向量為.設平面與平面的平面角為,由法向量的方向可知與法向量的夾角大小相等,所以,所以平面與平面夾角的余弦值為.21、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設,然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結果【小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設點到平面的距離為,因為,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標系,則,設,則,設平面的法向量為,則,令,則,設平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以22、(1);(2)【解析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美美少年計劃面試題及答案
- 肺炎治療與康復
- 幼兒園運動會方案培訓
- 2025年中國女式牛仔褲行業(yè)市場全景分析及前景機遇研判報告
- 4S店執(zhí)行力培訓
- 低血鉀癥狀外科護理學
- 教育培訓班教師工作總結
- CNAS認證實施流程
- 財務會計人員勞動合同續(xù)簽與終止范本
- 電信禮儀培訓
- 天津大學年《物理化學》期末試題及答案
- 2022年脫硝試題庫
- 《幼兒園中班第一學期家長會》 PPT課件
- 全國202X年4月自學考試公文寫作與處理試題和答案解析.doc
- 杜邦安全理念課件
- 《房屋面積測算技術規(guī)程》DGJ32TJ131-2011
- 管道無損檢測施工專項方案
- 酒店工程部考核表
- 槽鋼樁支護施工方案
- 土石壩剖面圖繪制12.28
- 水利水電工程防滲墻工程質量檢測
評論
0/150
提交評論