




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
太原市重點中學2025屆數學高三上期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”:,,,,則按照以上規律,若具有“穿墻術”,則()A.48 B.63 C.99 D.1202.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.843.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.4.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發現落在正方形花紋上的米共有51粒,據此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1475.執行下面的程序框圖,則輸出的值為()A. B. C. D.6.已知函數,下列結論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數,又是周期函數C.的圖像關于直線對稱 D.的最大值是7.命題:的否定為A. B.C. D.8.已知F是雙曲線(k為常數)的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.29.已知復數z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.在等差數列中,若為前項和,,則的值是()A.156 B.124 C.136 D.18011.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.12.集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在矩形ABCD中,,,點E,F分別為BC,CD邊上動點,且滿足,則的最大值為________.14.根據記載,最早發現勾股定理的人應是我國西周時期的數學家商高,商高曾經和周公討論過“勾3股4弦5”的問題.現有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(不含端點),且滿足勾股定理,則______.15.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.16.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,求的最小值.18.(12分)已知函數,(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數,當時,試判斷的零點個數.19.(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.20.(12分)某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.(1)請根據上述表格中的統計數據填寫下面列聯表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為“鍛煉達標”與性別有關?(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機選出人發言,記這人中女生的人數為,求的分布列和數學期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63521.(12分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.22.(10分)已知函數(1)當時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
觀察規律得根號內分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發現規律,根號內分母為分子的平方減1所以故選:C.【點睛】本題考查了歸納推理,發現總結各式規律是關鍵,屬于基礎題.2、B【解析】
畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.3、B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.4、B【解析】
結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題5、D【解析】
根據框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,
,,,,,結束循環,故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環結構,條件分支結構,屬于中檔題.6、D【解析】
通過三角函數的對稱性以及周期性,函數的最值判斷選項的正誤即可得到結果.【詳解】解:,正確;,為奇函數,周期函數,正確;,正確;D:,令,則,,,,則時,或時,即在上單調遞增,在和上單調遞減;且,,,故D錯誤.故選:.【點睛】本題考查三角函數周期性和對稱性的判斷,利用導數判斷函數最值,屬于中檔題.7、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結論否定,可知命題的否定為,故選C.8、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.9、A【解析】
設,由得:,由復數相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數的求法,考查對復數相等的理解,考查復數在復平面對應的點,考查運算能力,屬于常考題.10、A【解析】
因為,可得,根據等差數列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數列前項和,解題關鍵是掌握等差中項定義和等差數列前項和公式,考查了分析能力和計算能力,屬于基礎題.11、D【解析】
連接,根據題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎題12、A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用平面直角坐標系,設出點E,F的坐標,由可得,利用數量積運算求得,再利用線性規劃的知識求出的最大值.【詳解】建立平面直角坐標系,如圖(1)所示:設,,,即,又,令,其中,畫出圖形,如圖(2)所示:當直線經過點時,取得最大值.故答案為:【點睛】本題考查了向量數量積的坐標運算、簡單的線性規劃問題,解題的關鍵是建立恰當的坐標系,屬于基礎題.14、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點睛】本題考查向量的數量積,重點考查向量數量積的幾何意義,屬于基礎題.15、【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.16、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】
討論和的情況,然后再分對稱軸和區間之間的關系,最后求出最小值【詳解】當時,,它在上是減函數故函數的最小值為當時,函數的圖象思維對稱軸方程為當時,,函數的最小值為當時,,函數的最小值為當時,,函數的最小值為綜上,【點睛】本題主要考查了二次函數在閉區間上的最值,二次函數的性質的應用,體現了分類討論的數學思想,屬于中檔題。18、(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調遞減,,.∴在存在一個零點.綜上,的零點個數為1..【點睛】本題考查了利用導數解決函數零點問題,考查了分類討論思想,屬于壓軸題.19、(1)見解析;(2).【解析】
(1)設點、,求出直線、的方程,與拋物線的方程聯立,求出點、的坐標,利用直線、的斜率相等證明出;(2)設點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關于的表達式,結合不等式可解出實數的取值范圍.【詳解】(1)設點、,則,直線的方程為:,由,消去并整理得,由韋達定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設點到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達定理得,,,得,設點到直線的高為,則,,,,解得,因此,實數的取值范圍是.【點睛】本題考查直線與直線平行的證明,考查實數的取值范圍的求法,考查拋物線、直線方程、韋達定理、弦長公式、直線的斜率等基礎知識,考查運算求解能力,考查數形結合思想,是難題.20、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見解析.【解析】
(1)根據所給數據可完成列聯表.由總人數及女生人數得男生人數,由表格得達標人數,從而得男生中達標人數,這樣不達標人數隨之而得,然后計算可得結論;(2)由達標人數中男女生人數比為可得抽取的人數,總共選2人,女生有4人,的可能值為0,1,2,分別計算概率得分布列,再由期望公式可計算出期望.【詳解】(1)列出列聯表,,所以在犯錯誤的概率不超過的前提下能判斷“課外體育達標”與性別有關.(2)(i)在“鍛煉達標”的學生中,男女生人數比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會交流的人中,隨機選出人發言,人中女生的人數為,則的可能值為,,,則,,,可得的分布列為:可得數學期望.【點睛】本題考查列聯表與獨立性檢驗,考查分層抽樣,隨機變量的概率分布列和期望.主要考查學生的數據處理能力,運算求解能力,屬于中檔題.21、(1)(2)【解析】
(1)由公比表示出,由成等差數列可求得,從而數列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數列的前項和公式可求解.【詳解】(1)∵是等比數列,且成等差數列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數列的通項公式,考查并項求和法及等差數列的項和公式.本題求數列通項公式所用方法為基本量法,求和是用并項求和法.數列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.22、(1)證明見解析(2)【解析】
(1)根據,求導,令,用導數法求其最小值.設研
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醫藥流通行業供應鏈可視化與成本控制策略研究報告
- 中國儲能電池市場2025年能源資源應用分析報告
- 河北省廊坊市2025屆英語八年級第二學期期末復習檢測模擬試題含答案
- 保安崗位科目題庫及答案
- 2025年家具制造業個性化定制生產模式下的個性化定制生產模式下的產業競爭力分析報告
- 安全注射管理試題及答案
- 安全試題分類及答案大全
- 安全環保試題題庫及答案
- 溝通培訓課件模板
- 學校禮儀接待培訓課件
- 2023年機電產物報價手冊9分冊18本
- 鋼結構36米桁架吊裝安全監理實施細則1
- 西鐵城操作說明書
- 翡翠店面計劃書
- 《危險化學品重大危險源監督管理暫行規定》解讀
- 陪伴教育機器人簡介演示
- 年產10萬噸12度葡萄酒工廠設計說明書樣本
- 高考前后心理疏導應急預案
- 堅定理想信念教學課件
- 監理抽檢表 - 09涵洞工程
- 斗式提升機功率計算
評論
0/150
提交評論