北京師大附中2025屆數學高三第一學期期末復習檢測模擬試題含解析_第1頁
北京師大附中2025屆數學高三第一學期期末復習檢測模擬試題含解析_第2頁
北京師大附中2025屆數學高三第一學期期末復習檢測模擬試題含解析_第3頁
北京師大附中2025屆數學高三第一學期期末復習檢測模擬試題含解析_第4頁
北京師大附中2025屆數學高三第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京師大附中2025屆數學高三第一學期期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》是我國古代數學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內切圓的直徑為多少步?”現從該三角形內隨機取一點,則此點取自內切圓的概率是()A. B. C. D.2.一小商販準備用元錢在一批發市場購買甲、乙兩種小商品,甲每件進價元,乙每件進價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數應分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件3.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數列,則此雙曲線的離心率為()A. B. C. D.4.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現從農歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.5.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數據分析、機器學習、服務器開發五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種6.設過拋物線上任意一點(異于原點)的直線與拋物線交于兩點,直線與拋物線的另一個交點為,則()A. B. C. D.7.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+18.設,則復數的模等于()A. B. C. D.9.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數10.若的展開式中的系數為-45,則實數的值為()A. B.2 C. D.11.已知,則下列關系正確的是()A. B. C. D.12.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數(即質數)的和”,如,.在不超過20的素數中,隨機選取兩個不同的數,其和等于20的概率是()A. B. C. D.以上都不對二、填空題:本題共4小題,每小題5分,共20分。13.某市公租房源位于、、三個小區,每位申請人只能申請其中一個小區的房子,申請其中任意一個小區的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區房源的概率是______.(用數字作答)14.已知函數,則過原點且與曲線相切的直線方程為____________.15.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則容器體積的最小值為_________.16.下圖是一個算法流程圖,則輸出的的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求不等式的解集;(2)若對任意恒成立,求的取值范圍.18.(12分)已知函數在上的最大值為3.(1)求的值及函數的單調遞增區間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.19.(12分)在平面直角坐標系中,直線的傾斜角為,且經過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.20.(12分)已知,函數.(1)若,求的單調遞增區間;(2)若,求的值.21.(12分)[選修4-5:不等式選講]:已知函數.(1)當時,求不等式的解集;(2)設,,且的最小值為.若,求的最小值.22.(10分)一個工廠在某年里連續10個月每月產品的總成本(萬元)與該月產量(萬件)之間有如下一組數據:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發現可用線性回歸模型擬合與的關系,請用相關系數加以說明;(2)①建立月總成本與月產量之間的回歸方程;②通過建立的關于的回歸方程,估計某月產量為1.98萬件時,產品的總成本為多少萬元?(均精確到0.001)附注:①參考數據:,,,,.②參考公式:相關系數,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用直角三角形三邊與內切圓半徑的關系求出半徑,再分別求出三角形和內切圓的面積,根據幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內切圓的半徑為,所以向次三角形內投擲豆子,則落在其內切圓內的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質,求得其內切圓的半徑是解答的關鍵,著重考查了推理與運算能力.2、D【解析】

由題意列出約束條件和目標函數,數形結合即可解決.【詳解】設購買甲、乙兩種商品的件數應分別,利潤為元,由題意,畫出可行域如圖所示,顯然當經過時,最大.故選:D.【點睛】本題考查線性目標函數的線性規劃問題,解決此類問題要注意判斷,是否是整數,是否是非負數,并準確的畫出可行域,本題是一道基礎題.3、B【解析】

求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數列中項性質和離心率公式,計算可得所求值.【詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質,主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.4、B【解析】

利用古典概型概率計算方法分析出符合題意的基本事件個數,結合組合數的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數的計算,考查學生分析問題的能力,難度較易.5、B【解析】

將人臉識別方向的人數分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數.【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數學思想方法,屬于基礎題.6、C【解析】

畫出圖形,將三角形面積比轉為線段長度比,進而轉為坐標的表達式。寫出直線方程,再聯立方程組,求得交點坐標,最后代入坐標,求得三角形面積比.【詳解】作圖,設與的夾角為,則中邊上的高與中邊上的高之比為,,設,則直線,即,與聯立,解得,從而得到面積比為.故選:【點睛】解決本題主要在于將面積比轉化為線段長的比例關系,進而聯立方程組求解,是一道不錯的綜合題.7、B【解析】

以為圓心,以為半徑的圓的方程為,聯立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.8、C【解析】

利用復數的除法運算法則進行化簡,再由復數模的定義求解即可.【詳解】因為,所以,由復數模的定義知,.故選:C【點睛】本題考查復數的除法運算法則和復數的模;考查運算求解能力;屬于基礎題.9、D【解析】

當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.10、D【解析】

將多項式的乘法式展開,結合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數的求法,屬于基礎題.11、A【解析】

首先判斷和1的大小關系,再由換底公式和對數函數的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.12、A【解析】

首先確定不超過的素數的個數,根據古典概型概率求解方法計算可得結果.【詳解】不超過的素數有,,,,,,,,共個,從這個素數中任選個,有種可能;其中選取的兩個數,其和等于的有,,共種情況,故隨機選出兩個不同的數,其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

基本事件總數,恰好有2人申請小區房源包含的基本事件個數,由此能求出該市的任意5位申請人中,恰好有2人申請小區房源的概率.【詳解】解:某市公租房源位于、、三個小區,每位申請人只能申請其中一個小區的房子,申請其中任意一個小區的房子是等可能的,該市的任意5位申請人中,基本事件總數,該市的任意5位申請人中,恰好有2人申請小區房源包含的基本事件個數:,該市的任意5位申請人中,恰好有2人申請小區房源的概率是.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,屬于中檔題.14、【解析】

設切點坐標為,利用導數求出曲線在切點的切線方程,將原點代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設切點坐標為,,,,則曲線在點處的切線方程為,由于該直線過原點,則,得,因此,則過原點且與曲線相切的直線方程為,故答案為.【點睛】本題考查導數的幾何意義,考查過點作函數圖象的切線方程,求解思路是:(1)先設切點坐標,并利用導數求出切線方程;(2)將所過點的坐標代入切線方程,求出參數的值,可得出切點的坐標;(3)將參數的值代入切線方程,可得出切線的方程.15、【解析】

一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.16、3【解析】

分析程序中各變量、各語句的作用,根據流程圖所示的順序,即可得出結論.【詳解】解:初始,第一次循環:;第二次循環:;第三次循環:;經判斷,此時跳出循環,輸出.故答案為:【點睛】本題考查了程序框圖的應用問題,解題的關鍵是對算法語句的理解,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)通過討論的范圍,分為,,三種情形,分別求出不等式的解集即可;(2)通過分離參數思想問題轉化為,根據絕對值不等式的性質求出最值即可得到的范圍.【詳解】(1)當時,原不等式等價于,解得,所以,當時,原不等式等價于,解得,所以此時不等式無解,當時,原不等式等價于,解得,所以綜上所述,不等式解集為.(2)由,得,當時,恒成立,所以;當時,.因為當且僅當即或時,等號成立,所以;綜上的取值范圍是.【點睛】本題考查了解絕對值不等式問題,考查絕對值不等式的性質以及分類討論思想,轉化思想,屬于中檔題.18、(1),函數的單調遞增區間為;(2).【解析】

(1)運用降冪公式和輔助角公式,把函數的解析式化為正弦型函數解析式形式,根據已知,可以求出的值,再結合正弦型函數的性質求出函數的單調遞增區間;(2)由(1)結合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉化為兩邊對角的正弦值的比值的取值范圍,結合已知是銳角三角形,三角形內角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數的單調遞增區間為(2)由已知,∴由得,因此所以因為為銳角三角形,所以,解得因此,那么【點睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數的單調性,考查了數學運算能力.19、(Ⅰ)(t為參數),;(Ⅱ)1.【解析】

(Ⅰ)直接由已知寫出直線l1的參數方程,設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數方程代入C的直角坐標方程中,得到關于t的一元二次方程,再由參數t的幾何意義可得|AP|?|AQ|的值.【詳解】(Ⅰ)直線l1的參數方程為,(t為參數)即(t為參數).設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),則,即,即ρ=4cosθ,∴曲線C的直角坐標方程為x2-4x+y2=0(x≠0).(Ⅱ)將l1的參數方程代入C的直角坐標方程中,得,即,t1,t2為方程的兩個根,∴t1t2=-1,∴|AP|?|AQ|=|t1t2|=|-1|=1.【點睛】本題考查簡單曲線的極坐標方程,考查直角坐標方程與直角坐標方程的互化,訓練了直線參數方程中參數t的幾何意義的應用,是中檔題.20、(1);(2).【解析】

(1)利用三角恒等變換思想化簡函數的解析式為,然后解不等式,可得出函數的單調遞增區間;(2)由得出,并求出的值,利用兩角差的正弦公式可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論