江西省樟樹第二中學2023-2024學年中考聯考數學試題含解析_第1頁
江西省樟樹第二中學2023-2024學年中考聯考數學試題含解析_第2頁
江西省樟樹第二中學2023-2024學年中考聯考數學試題含解析_第3頁
江西省樟樹第二中學2023-2024學年中考聯考數學試題含解析_第4頁
江西省樟樹第二中學2023-2024學年中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省樟樹第二中學2023-2024學年中考聯考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列事件是必然事件的是()A.任意作一個平行四邊形其對角線互相垂直B.任意作一個矩形其對角線相等C.任意作一個三角形其內角和為D.任意作一個菱形其對角線相等且互相垂直平分2.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數如圖.這5個正確答題數所組成的一組數據的中位數和眾數分別是()A.10,15 B.13,15 C.13,20 D.15,153.某個密碼鎖的密碼由三個數字組成,每個數字都是0-9這十個數字中的一個,只有當三個數字與所設定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設密碼的最后那個數字,那么一次就能打開該密碼的概率是()A.110 B.19 C.14.如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F,若∠B=52°,∠DAE=20°,則∠FED′的度數為()A.40° B.36° C.50° D.45°5.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a66.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形7.方程(m–2)x2+3mx+1=0是關于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠28.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.9.化簡÷的結果是()A. B. C. D.2(x+1)10.關于x的一元二次方程x2+2x+k+1=0的兩個實根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數軸上表示為()A. B.C. D.11.如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F,則DE的長是()A. B. C.1 D.12.某車間需加工一批零件,車間20名工人每天加工零件數如表所示:每天加工零件數45678人數36542每天加工零件數的中位數和眾數為()A.6,5 B.6,6 C.5,5 D.5,6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式:x3y﹣2x2y+xy=______.14.如圖,在直角三角形ABC中,∠ACB=90°,CA=4,點P是半圓弧AC的中點,連接BP,線段即把圖形APCB(指半圓和三角形ABC組成的圖形)分成兩部分,則這兩部分面積之差的絕對值是_____.15.如圖,AB是⊙O的直徑,點C是⊙O上的一點,若BC=6,AB=10,OD⊥BC于點D,則OD的長為______.16.如圖,一次函數y=x﹣2的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點,與x軸交與點C,若tan∠AOC=,則k的值為_____.17.π﹣3的絕對值是_____.18.如圖,已知雙曲線經過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(-6,4),則△AOC的面積為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某學校為弘揚中國傳統詩詞文化,在九年級隨機抽查了若干名學生進行測試,然后把測試結果分為4個等級;A、B、C、D,對應的成績分別是9分、8分、7分、6分,并將統計結果繪制成兩幅如圖所示的統計圖.請結合圖中的信息解答下列問題:(1)本次抽查測試的學生人數為,圖①中的a的值為;(2)求統計所抽查測試學生成績數據的平均數、眾數和中位數.20.(6分)如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數y=的圖象上.(1)求反比例函數y=的表達式;(2)在x軸上是否存在一點P,使得S△AOP=S△AOB,若存在,求所有符合條件點P的坐標;若不存在,簡述你的理由.21.(6分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點O,若AC=AB=3,cosB=,求線段CE的長.22.(8分)(1)計算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式組:,并把它的解集在數軸上表示出來.23.(8分)已知二次函數.(1)該二次函數圖象的對稱軸是;(2)若該二次函數的圖象開口向上,當時,函數圖象的最高點為,最低點為,點的縱坐標為,求點和點的坐標;(3)對于該二次函數圖象上的兩點,,設,當時,均有,請結合圖象,直接寫出的取值范圍.24.(10分)閱讀下列材料,解答下列問題:材料1.把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個變形過程,那么多項式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項式,就不能直接應用完全平方了,我們可以在二次三項式中先加上一項,使其配成完全平方式,再減去這項,使整個式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數學解題中常見的一種思想方法,請你解答下列問題:(1)根據材料1,把c2﹣6c+8分解因式;(2)結合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.25.(10分)今年3月12日植樹節期間,學校預購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5棵,需2100元,若購進A種樹苗4棵,B種樹苗10棵,需3800元.(1)求購進A、B兩種樹苗的單價;(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?26.(12分)如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經過橋DC,沿折線A→D→C→B到達,現在新建了橋EF(EF=DC),可直接沿直線AB從A地到達B地,已知BC=12km,∠A=45°,∠B=30°,橋DC和AB平行.(1)求橋DC與直線AB的距離;(2)現在從A地到達B地可比原來少走多少路程?(以上兩問中的結果均精確到0.1km,參考數據:≈1.14,≈1.73)27.(12分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數y=(k≠0)的圖象經過點B.求反比例函數的解析式;若點E恰好落在反比例函數y=上,求平行四邊形OBDC的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

必然事件就是一定發生的事件,根據定義對各個選項進行判斷即可.【詳解】解:A、任意作一個平行四邊形其對角線互相垂直不一定發生,是隨機事件,故本選項錯誤;B、矩形的對角線相等,所以任意作一個矩形其對角線相等一定發生,是必然事件,故本選項正確;C、三角形的內角和為180°,所以任意作一個三角形其內角和為是不可能事件,故本選項錯誤;D、任意作一個菱形其對角線相等且互相垂直平分不一定發生,是隨機事件,故選項錯誤,故選:B.【點睛】解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.熟練掌握相關圖形的性質也是解題的關鍵.2、D【解析】

將五個答題數,從小打到排列,5個數中間的就是中位數,出現次數最多的是眾數.【詳解】將這五個答題數排序為:10,13,15,15,20,由此可得中位數是15,眾數是15,故選D.【點睛】本題考查中位數和眾數的概念,熟記概念即可快速解答.3、A【解析】試題分析:根據題意可知總共有10種等可能的結果,一次就能打開該密碼的結果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.4、B【解析】

由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,與三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大小.【詳解】∵四邊形ABCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.5、D【解析】

根據合并同類項法則判斷A、C;根據積的乘方法則判斷B;根據冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【點睛】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質和運算法則是解題的關鍵.6、C【解析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.7、D【解析】試題分析:根據一元二次方程的概念,可知m-2≠0,解得m≠2.故選D8、A【解析】

根據應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.9、A【解析】

原式利用除法法則變形,約分即可得到結果.【詳解】原式=?(x﹣1)=.故選A.【點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.10、D【解析】試題分析:根據根的判別式和根與系數的關系列出不等式,求出解集.解:∵關于x的一元二次方程x2+2x+k+1=0有兩個實根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數軸上表示為:,故選D.點評:本題考查了根的判別式、根與系數的關系,在數軸上找到公共部分是解題的關鍵.11、D【解析】

過F作FH⊥AE于H,根據矩形的性質得到AB=CD,AB//CD,推出四邊形AECF是平行四邊形,根據平行四邊形的性質得到AF=CE,根據相似三角形的性質得到,于是得到AE=AF,列方程即可得到結論.【詳解】解:如圖:解:過F作FH⊥AE于H,四邊形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四邊形AECF是平行四邊形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故選D.【點睛】本題主要考查平行四邊形的性質及三角形相似,做合適的輔助線是解本題的關鍵.12、A【解析】

根據眾數、中位數的定義分別進行解答即可.【詳解】由表知數據5出現了6次,次數最多,所以眾數為5;因為共有20個數據,所以中位數為第10、11個數據的平均數,即中位數為=6,故選A.【點睛】本題考查了眾數和中位數的定義.用到的知識點:一組數據中出現次數最多的數據叫做這組數據的眾數.將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、xy(x﹣1)1【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=xy(x1-1x+1)=xy(x-1)1.故答案為:xy(x-1)1【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.14、4【解析】

連接把兩部分的面積均可轉化為規則圖形的面積,不難發現兩部分面積之差的絕對值即為的面積的2倍.【詳解】解:連接OP、OB,∵圖形BAP的面積=△AOB的面積+△BOP的面積+扇形OAP的面積,圖形BCP的面積=△BOC的面積+扇形OCP的面積?△BOP的面積,又∵點P是半圓弧AC的中點,OA=OC,∴扇形OAP的面積=扇形OCP的面積,△AOB的面積=△BOC的面積,∴兩部分面積之差的絕對值是點睛:考查扇形面積和三角形的面積,把不規則圖形的面積轉化為規則圖形的面積是解題的關鍵.15、1【解析】

根據垂徑定理求得BD,然后根據勾股定理求得即可.【詳解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案為1.【點睛】本題考查垂徑定理及其勾股定理,熟記定理并靈活應用是本題的解題關鍵.16、1【解析】【分析】如圖,過點A作AD⊥x軸,垂足為D,根據題意設出點A的坐標,然后根據一次函數y=x﹣2的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點,可以求得a的值,進而求得k的值即可.【詳解】如圖,過點A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設點A的坐標為(1a,a),∵一次函數y=x﹣2的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【點睛】本題考查了正切,反比例函數與一次函數的交點問題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.17、π﹣1.【解析】

根據絕對值的性質即可解答.【詳解】π﹣1的絕對值是π﹣1.故答案為π﹣1.【點睛】本題考查了絕對值的性質,熟練運用絕對值的性質是解決問題的關鍵.18、2【解析】解:∵OA的中點是D,點A的坐標為(﹣6,4),∴D(﹣1,2),∵雙曲線y=經過點D,∴k=﹣1×2=﹣6,∴△BOC的面積=|k|=1.又∵△AOB的面積=×6×4=12,∴△AOC的面積=△AOB的面積﹣△BOC的面積=12﹣1=2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)50、2;(2)平均數是7.11;眾數是1;中位數是1.【解析】

(1)根據A等級人數及其百分比可得總人數,用C等級人數除以總人數可得a的值;(2)根據平均數、眾數、中位數的定義計算可得.【詳解】(1)本次抽查測試的學生人數為14÷21%=50人,a%=×100%=2%,即a=2.故答案為50、2;(2)觀察條形統計圖,平均數為=7.11.∵在這組數據中,1出現了20次,出現的次數最多,∴這組數據的眾數是1.∵將這組數據從小到大的順序排列,其中處于中間的兩個數都是1,∴=1,∴這組數據的中位數是1.【點睛】本題考查了眾數、平均數和中位數的定義.用到的知識點:一組數據中出現次數最多的數據叫做這組數據的眾數.將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.平均數是指在一組數據中所有數據之和再除以數據的個數.20、(1)y=;(1)(﹣1,0)或(1,0)【解析】

(1)把A的坐標代入反比例函數的表達式,即可求出答案;(1)求出∠A=60°,∠B=30°,求出線段OA和OB,求出△AOB的面積,根據已知S△AOPS△AOB,求出OP長,即可求出答案.【詳解】(1)把A(,1)代入反比例函數y得:k=1,所以反比例函數的表達式為y;(1)∵A(,1),OA⊥AB,AB⊥x軸于C,∴OC,AC=1,OA1.∵tanA,∴∠A=60°.∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA?OB1×1.∵S△AOPS△AOB,∴OP×AC.∵AC=1,∴OP=1,∴點P的坐標為(﹣1,0)或(1,0).【點睛】本題考查了用待定系數法求反比例函數的解析式,三角形的面積,解直角三角形等知識點,求出反比例函數的解析式和求出△AOB的面積是解答此題的關鍵.21、(1)證明見解析;(2)4.【解析】

(1)已知四邊形ABCD是平行四邊形,根據平行四邊形的性質可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根據一組對邊平行且相等的四邊形是平行四邊形即可判定四邊形ACDE是平行四邊形;(2)連接EC,易證△BEC是直角三角形,解直角三角形即可解決問題.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四邊形ACDE是平行四邊形.(2)如圖,連接EC.∵AC=AB=AE,∴△EBC是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【點睛】本題考查平行四邊形的性質和判定、直角三角形的判定、勾股定理、銳角三角函數等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.22、(1)-3;(2).【解析】分析:(1)代入30°角的余弦函數值,結合零指數冪、負整數指數冪的意義及二次根式的相關運算法則計算即可;(2)按照解一元一次不等式組的一般步驟解答,并把解集規范的表示到數軸上即可.(1)原式===-3.(2)解不等式①得:,解不等式②得:,∴不等式組的解集為:不等式組的解集在數軸上表示:點睛:熟記零指數冪的意義:,(,為正整數)即30°角的余弦函數值是本題解題的關鍵.23、(1)x=1;(2),;(3)【解析】

(1)二次函數的對稱軸為直線x=-,帶入即可求出對稱軸,(2)在區間內發現能夠取到函數的最低點,即為頂點坐標,當開口向上是,距離對稱軸越遠,函數值越大,所以當x=5時,函數有最大值.(3)分類討論,當二次函數開口向上時不滿足條件,所以函數圖像開口只能向下,且應該介于-1和3之間,才會使,解不等式組即可.【詳解】(1)該二次函數圖象的對稱軸是直線;(2)∵該二次函數的圖象開口向上,對稱軸為直線,,∴當時,的值最大,即.把代入,解得.∴該二次函數的表達式為.當時,,∴.(3)易知a0,∵當時,均有,∴,解得∴的取值范圍.【點睛】本題考查了二次函數的對稱軸,定區間內求函數值域,以及二次函數圖像的性質,難度較大,綜合性強,熟悉二次函數的單調性是解題關鍵.24、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解析】

(1)根據材料1,可以對c2-6c+8分解因式;(2)①根據材料2的整體思想可以對(a-b)2+2(a-b)+1分解因式;②根據材料1和材料2可以對(m+n)(m+n-4)+3分解因式.【詳解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1設a-b=t,則原式=t2+2t+1=(t+1)2,則(a-b)2+2(a-b)+1=(a-b+1)2;②(m+n)(m+n-4)+3設m+n=t,則t(t-4)+3=t2-4t+3=t2-4t+22-22+3=(t-2)2-1=(t-2+1)(t-2-1)=(t-1)(t-3),則(m+n)(m+n-4)+3=(m+n-1)(m+n-3).【點睛】本題考查因式分解的應用,解題的關鍵是明確題意,可以根據材料中的例子對所求的式子進行因式分解.25、(1)購進A種樹苗的單價為200元/棵,購進B種樹苗的單價為300元/棵(2)A種樹苗至少需購進1棵【解析】

(1)設購進A種樹苗的單價為x元/棵,購進B種樹苗的單價為y元/棵,根據“若購進A種樹苗3棵,B種樹苗5棵,需210元,若購進A種樹苗4棵,B種樹苗1棵,需3800元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;

(2)設需購進A種樹苗a棵,則購進B種樹苗(30-a)棵,根據總價=單價×購買數量結合購買兩種樹苗的總費用不多于8000元,即可得出關于a的一元一次不等式,解之取其中的最小值即可得出結論.【詳解】設購進A種樹苗的單價為x元/棵,購進

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論