




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京市六區重點名校2024屆中考聯考數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為()A.7 B.8 C.9 D.102.將拋物線y=x2先向左平移2個單位,再向下平移3個單位后所得拋物線的解析式為()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣33.如圖是一個放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.4.7的相反數是()A.7 B.-7 C. D.-5.一次函數的圖像不經過的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.47.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE8.許昌市2017年國內生產總值完成1915.5億元,同比增長9.3%,增速居全省第一位,用科學記數法表示1915.5億應為()A.1915.15×108 B.19.155×1010C.1.9155×1011 D.1.9155×10129.將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-210.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在網格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.12.已知一組數據:3,3,4,5,5,則它的方差為____________13.若實數m、n在數軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)14.如圖,一塊飛鏢游戲板由大小相等的小正方形格子構成,向游戲板隨機投擲一枚飛鏢,擊中黑色區域的概率是______.15.因式分解:-3x2+3x=________.16.尺規作圖:過直線外一點作已知直線的平行線.已知:如圖,直線l與直線l外一點P.求作:過點P與直線l平行的直線.作法如下:(1)在直線l上任取兩點A、B,連接AP、BP;(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;(3)過點P、M作直線;(4)直線PM即為所求.請回答:PM平行于l的依據是_____.三、解答題(共8題,共72分)17.(8分)如圖所示,已知一次函數(k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(m≠0)的圖象在第一象限交于C點,CD垂直于x軸,垂足為D.若OA=OB=OD=1.(1)求點A、B、D的坐標;(2)求一次函數和反比例函數的解析式.18.(8分)鮮豐水果店計劃用元/盒的進價購進一款水果禮盒以備銷售.據調查,當該種水果禮盒的售價為元/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應不高于多少元?在實際銷售時,由于天氣和運輸的原因,每盒水果禮盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結果該月水果店銷售該水果禮盒的利潤達到了元,求的值.19.(8分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.20.(8分)某通訊公司推出了A,B兩種上寬帶網的收費方式(詳情見下表)設月上網時間為xh(x為非負整數),請根據表中提供的信息回答下列問題(1)設方案A的收費金額為y1元,方案B的收費金額為y2元,分別寫出y1,y2關于x的函數關系式;(2)當35<x<50時,選取哪種方式能節省上網費,請說明理由21.(8分)如圖,將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′,點C的對應點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.22.(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.23.(12分)某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖(1)所示,成本y2與銷售月份之間的關系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)分別求出y1、y2的函數關系式(不寫自變量取值范圍);通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?24.如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米.參考數據:≈1.414,≈1.732)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.2、D【解析】
先得到拋物線y=x2的頂點坐標(0,0),再根據點平移的規律得到點(0,0)平移后的對應點的坐標為(-2,-1),然后根據頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線y=x2的頂點坐標為(0,0),把點(0,0)先向左平移2個單位,再向下平移1個單位得到對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.故選:D.【點睛】本題考查了二次函數與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.3、B【解析】
根據俯視圖是從上面看到的圖形解答即可.【詳解】錐形瓶從上面往下看看到的是兩個同心圓.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.4、B【解析】
根據只有符號不同的兩個數互為相反數,可得答案.【詳解】7的相反數是?7,故選:B.【點睛】此題考查相反數,解題關鍵在于掌握其定義.5、C【解析】試題分析:根據一次函數y=kx+b(k≠0,k、b為常數)的圖像與性質可知:當k>0,b>0時,圖像過一二三象限;當k>0,b<0時,圖像過一三四象限;當k<0,b>0時,圖像過一二四象限;當k<0,b<0,圖像過二三四象限.這個一次函數的k=<0與b=1>0,因此不經過第三象限.答案為C考點:一次函數的圖像6、D【解析】
①根據作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結論是:①②③④,,共有4個.故選D.7、C【解析】
根據相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.8、C【解析】
科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.【詳解】用科學記數法表示1915.5億應為1.9155×1011,故選C.【點睛】考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.9、A【解析】試題分析:根據函數圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是y=(x﹣1)2+2,故選A.考點:二次函數圖象與幾何變換.10、C【解析】
首先根據AD∥BC,求出∠FED的度數,然后根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大小.【詳解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折疊的性質知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質與折疊的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.12、【解析】根據題意先求出這組數據的平均數是:(3+3+4+5+5)÷5=4,再根據方差公式求出這組數據的方差為:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.故答案為.13、>【解析】
根據數軸可以確定m、n的大小關系,根據加法以及減法的法則確定m+n以及m?n的符號,可得結果.【詳解】解:根據題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【點睛】本題考查了整式的加減和數軸,熟練掌握運算法則是解題的關鍵.14、【解析】
求出黑色區域面積與正方形總面積之比即可得答案.【詳解】圖中有9個小正方形,其中黑色區域一共有3個小正方形,所以隨意投擲一個飛鏢,擊中黑色區域的概率是,故答案為.【點睛】本題考查了幾何概率,熟練掌握概率的計算公式是解題的關鍵.注意面積之比幾何概率.15、-3x(x-1)【解析】
原式提取公因式即可得到結果.【詳解】解:原式=-3x(x-1),故答案為-3x(x-1)【點睛】此題考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關鍵.16、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【解析】
利用畫法得到PM=AB,BM=PA,則利用平行四邊形的判定方法判斷四邊形ABMP為平行四邊形,然后根據2平行四邊形的性質得到PM∥AB.【詳解】解:由作法得PM=AB,BM=PA,∴四邊形ABMP為平行四邊形,∴PM∥AB.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【點睛】本題考查基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了平行四邊形的判定與性質.三、解答題(共8題,共72分)17、(1)A(-1,0),B(0,1),D(1,0)(2)一次函數的解析式為反比例函數的解析式為【解析】解:(1)∵OA=OB=OD=1,∴點A、B、D的坐標分別為A(-1,0),B(0,1),D(1,0)。(2)∵點A、B在一次函數(k≠0)的圖象上,∴,解得。∴一次函數的解析式為。∵點C在一次函數y=x+1的圖象上,且CD⊥x軸,∴點C的坐標為(1,2)。又∵點C在反比例函數(m≠0)的圖象上,∴m=1×2=2。∴反比例函數的解析式為。(1)根據OA=OB=OD=1和各坐標軸上的點的特點易得到所求點的坐標。(2)將A、B兩點坐標分別代入,可用待定系數法確定一次函數的解析式,由C點在一次函數的圖象上可確定C點坐標,將C點坐標代入可確定反比例函數的解析式。18、(1)若使水果禮盒的月銷量不低于盒,每盒售價應不高于元;(2)的值為.【解析】
(1)設每盒售價應為x元,根據月銷量=980-30×超出14元的部分結合月銷量不低于800盒,即可得出關于x的一元一次不等式,解之取其最大值即可得出結論;
(2)根據總利潤=每盒利潤×銷售數量,即可得出關于m的一元二次方程,解之取其正值即可得出結論.【詳解】解:設每盒售價元.依題意得:解得:答:若使水果禮盒的月銷量不低于盒,每盒售價應不高于元依題意:令:化簡:解得:(舍),答:的值為.【點睛】考查一元二次方程的應用,一元一次不等式的應用,讀懂題目,找出題目中的等量關系或不等關系是解題的關鍵.19、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質和菱形的性質即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點E是BC邊的中點,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點O,∴AC⊥EF于點O,點O是AC中點.∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點:1.菱形的性質和面積;2.平行四邊形的性質;3.解直角三角形.20、(1),;(2)當35<x<1時,選擇B方式能節省上網費,見解析.【解析】
(1)根據兩種方式的收費標準,進行分類討論即可求解;
(2)當35<x<1時,計算出y1-y2的值,即可得出答案.【詳解】解:(1)由題意得:;即;;即;(2)選擇B方式能節省上網費當35<x<1時,有y1=3x-45,y2=1.:y1-y2=3x-45-1=3x-2.記y=3x-2因為3>4,有y隨x的增大而增大當x=35時,y=3.所以當35<x<1時,有y>3,即y>4.所以當35<x<1時,選擇B方式能節省上網費【點睛】此題考查了一次函數的應用,注意根據圖表得出解題需要的信息,難度一般,正確理解收費標準求出函數解析式是解題的關鍵.21、(1)證明見解析;(2)AE=.【解析】
(1)連結AC、AC′,根據矩形的性質得到∠ABC=90°,即AB⊥CC′,根據旋轉的性質即可得到結論;(2)根據矩形的性質得到AD=BC,∠D=∠ABC′=90°,根據旋轉的性質得到BC′=AD′,AD=AD′,證得BC′=AD′,根據全等三角形的性質得到BE=D′E,設AE=x,則D′E=2﹣x,根據勾股定理列方程即可得到結論.【詳解】解::(1)連結AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四邊形ABCD為矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E與△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,設AE=x,則D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【點睛】本題考查了旋轉的性質,三角形全等的判定和性質,勾股定理的應用等,熟練掌握性質定理是解題的關鍵.22、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】
(1)利用平行線的性質及中點的定義,可利用AAS證得結論;
(2)由(1)可得AF=BD,結合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質可證得AD=CD,可證得四邊形ADCF為菱形;
(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《跨境電商基礎教程》課件二維碼1項目一課件
- 沼氣投資項目可行性研究報告(立項備案模板)undefinedundefined
- 2025年中醫學職業資格考試試題及答案
- 2025年電子商務技術與管理考試試題及答案
- 藥品采購政策培訓
- 網紅培訓課件
- 2025年城市軌道交通運營考試試題及答案
- 黑龍江省訥河市實驗學校2025年八年級英語第二學期期中學業質量監測試題含答案
- 北京朝陽人大附朝陽分校2025屆英語七下期末質量跟蹤監視試題含答案
- 城市綠色食品流通協會會員招募協議
- 海康2023綜合安防工程師認證試題答案HCA
- 2023年公需課 大數據概述及基本概念考題
- 濁度儀使用說明書
- GB/T 14404-2011剪板機精度
- GB/T 14294-1993組合式空調機組
- GA 1517-2018金銀珠寶營業場所安全防范要求
- 提高痰留取成功率PDCA課件
- 組合導航與融合導航解析課件
- 伊金霍洛旗事業編招聘考試《行測》歷年真題匯總及答案解析精選V
- 深基坑支護工程驗收表
- 顱腦CT影像課件
評論
0/150
提交評論