




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共7頁2024-2025學(xué)年四川省成都市第三十七中學(xué)高一新生入學(xué)分班質(zhì)量檢測數(shù)學(xué)試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)下列函數(shù)中,自變量x的取值范圍是x≥2的是()A. B.C. D.2、(4分)用配方法解關(guān)于x的方程x2+px+q=0時,此方程可變形為()A. B.C. D.3、(4分)如圖,在菱形ABCD中MN分別在AB、CD上且AM=CN,MN與AC交于點O,連接BO若∠DAC=62°,則∠OBC的度數(shù)為()A.28° B.52° C.62° D.72°4、(4分)如圖,兩直線和在同一坐標(biāo)系內(nèi)圖象的位置可能是()A. B.C. D.5、(4分)若=,則x的取值范圍是()A.x<3 B.x≤3 C.0≤x<3 D.x≥06、(4分)已知線段CD是由線段AB平移得到的,點A(–1,4)的對應(yīng)點為C(4,7),則點B(–4,–1)的對應(yīng)點D的坐標(biāo)為()A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)7、(4分)如圖,A,B,C是⊙O上三點,∠α=140°,那么∠A等于().A.70° B.110° C.140° D.220°8、(4分)若線段AB=2,且點C是AB的黃金分割點,則BC等于()A.5+1 B.3-5 C.5+1或3-5 二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)若一個直角三角形的其中兩條邊長分別為6和8,則第三邊長為_____.10、(4分)如圖,在△ABC中,∠B=90°,∠A=30°,DE是斜邊AC的垂直平分線,分別交AB,AC于點D,E,若BC=2,則DE=___.11、(4分)如圖,將三個邊長都為a的正方形一個頂點重合放置,則∠1+∠2+∠3=_______.12、(4分)如圖,矩形中,,延長交于點,延長交于點,過點作,交的延長線于點,,則=_________.13、(4分)有一塊田地的形狀和尺寸如圖,則它的面積為_________.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,在四邊形ABCD中,AD∥BC,BD⊥AD,點E,F(xiàn)分別是邊AB,CD的中點,且DE=BF.求證:四邊形ABCD是平行四邊形.15、(8分)周口市某水果店一周內(nèi)甲、乙兩種水果每天銷售情況統(tǒng)計如下:(單位:千克)品種星期一二三四五六日甲乙(1)分別求出本周內(nèi)甲、乙兩種水果每天銷售量的平均數(shù);(2)哪種水果銷售量比較穩(wěn)定?16、(8分)如圖1,已知△ABC,AB=AC,以邊AB為直徑的⊙O交BC于點D,交AC于點E,連接DE.(1)求證:DE=DC.(2)如圖2,連接OE,將∠EDC繞點D逆時針旋轉(zhuǎn),使∠EDC的兩邊分別交OE的延長線于點F,AC的延長線于點G.試探究線段DF、DG的數(shù)量關(guān)系.17、(10分)已知,如圖,O為正方形對角線的交點,BE平分∠DBC,交DC于點E,延長BC到點F,使CF=CE,連結(jié)DF,交BE的延長線于點G,連結(jié)OG.(1)求證:△BCE≌△DCF.(2)判斷OG與BF有什么關(guān)系,證明你的結(jié)論.(3)若DF2=8-4,求正方形ABCD的面積?18、(10分)如圖,在?ABCD中,作對角線BD的垂直平分線EF,垂足為O,分別交AD,BC于E,F(xiàn),連接BE,DF.求證:四邊形BFDE是菱形.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)關(guān)于x的方程x2+5x+m=0的一個根為﹣2,則另一個根是________.20、(4分)如圖,四邊形ABCD是平行四邊形,O是對角線AC與BD的交點,AB⊥AC,若AB=8,AC=12,則BD的長是.21、(4分)如圖,點E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下面四個結(jié)論:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四邊形DEOF,其中正確結(jié)論的序號是_____.22、(4分)正比例函數(shù)圖象與反比例函數(shù)圖象的一個交點的橫坐標(biāo)為,則______.23、(4分)對任意的兩實數(shù),用表示其中較小的數(shù),如,則方程的解是__________.二、解答題(本大題共3個小題,共30分)24、(8分)如圖,等腰直角三角形AEF的頂點E在等腰直角三角形ABC的邊BC上.AB的延長線交EF于D點,其中∠AEF=∠ABC=90°.(1)求證:(2)若E為BC的中點,求的值.25、(10分)為了滿足學(xué)生的物質(zhì)需求,我市某中學(xué)到紅旗超市準(zhǔn)備購進甲、乙兩種綠色袋裝食品.其中甲、乙兩種綠色袋裝食品的進價和售價如下表:甲乙進價(元/袋)售價(元/袋)2013已知:用2000元購進甲種袋裝食品的數(shù)量與用1600元購進乙種袋裝食品的數(shù)量相同.(1)求的值;(2)要使購進的甲、乙兩種綠色袋裝食品共800袋的總利潤(利潤=售價-進價)不少于5200元,且不超5280元,問該紅旗超市有幾種進貨方案?(3)在(2)的條件下,該紅旗超市準(zhǔn)備對甲種袋裝食品進行優(yōu)惠促銷活動,決定對甲種袋裝食品每袋優(yōu)惠元出售,乙種袋裝食品價格不變.那么該紅旗超市要獲得最大利潤應(yīng)如何進貨?26、(12分)如圖,在網(wǎng)格圖中,平移使點平移到點,每小格代表1個單位。(1)畫出平移后的;(2)求的面積.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、D【解析】
根據(jù)分式與二次根式有意義的條件依次分析四個選項,比較哪個選項符合條件,可得答案.【詳解】解:A、y=有意義,∴2-x≥0,解得x≤2;
B、y=有意義,∴x-2>0,解得x>2;
C、y=有意義,∴4-x2≥0,解得-2≤x≤2;
D、y=有意義,∴x+2≥0且x-2≥0,解得x≥2;
分析可得D符合條件;
故選:D.本題考查函數(shù)自變量的取值問題,函數(shù)自變量的范圍一般從三個方面考慮:
(1)當(dāng)函數(shù)表達式是整式時,自變量可取全體實數(shù);
(2)當(dāng)函數(shù)表達式是分式時,考慮分式的分母不能為0;
(3)當(dāng)函數(shù)表達式是二次根式時,被開方數(shù)非負.2、A【解析】
根據(jù)配方法的步驟逐項分析即可.【詳解】∵x2+px+q=0,∴x2+px=-q,∴x2+px+=-q+,∴.故選A.本題考查了配方法解一元二次方程,配方法的一般步驟:①把常數(shù)項移到等號的右邊;②把二次項的系數(shù)化為1;③等式兩邊同時加上一次項系數(shù)一半的平方.3、A【解析】
連接OB,根據(jù)菱形的性質(zhì)以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數(shù).【詳解】解:連接OB,∵四邊形ABCD為菱形∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=62°,∴∠BCA=∠DAC=62°,∴∠OBC=90°-62°=28°.故選:A.本題考查了菱形的性質(zhì)和全等三角形的判定和性質(zhì),注意掌握菱形對邊平行以及對角線相互垂直的性質(zhì).4、D【解析】
根據(jù)一次函數(shù)的系數(shù)與圖象的關(guān)系依次分析選項,找k、b取值范圍相同的即得答案.【詳解】根據(jù)一次函數(shù)的系數(shù)與圖象的關(guān)系依次分析選項可得:
A、由圖可得,中,,,中,,,不符合;
B、由圖可得,中,,,中,,,不符合;
C、由圖可得,中,,,中,,,不符合;
D、由圖可得,中,,,中,,,符合;
故選:D.本題考查了一次函數(shù)的圖象問題,解答本題注意理解:直線所在的位置與的符號有直接的關(guān)系.5、C【解析】試題解析:根據(jù)題意得:解得:故選C.6、A【解析】∵線段CD是由線段AB平移得到的,而點A(?1,4)的對應(yīng)點為C(4,7),∴由A平移到C點的橫坐標(biāo)增加5,縱坐標(biāo)增加3,則點B(?4,?1)的對應(yīng)點D的坐標(biāo)為(1,2).故選A7、B【解析】
解:根據(jù)周角可以計算360°﹣∠α=220°,再根據(jù)圓周角定理,得∠A的度數(shù).∵∠1=360°﹣∠α=220°,∴∠A=∠1=220°÷2=110°.故選B.考點:圓周角定理.8、D【解析】
分AC<BC、AC>BC兩種情況,根據(jù)黃金比值計算即可.【詳解】解:當(dāng)AC<BC時,BC=5-12AB=當(dāng)AC>BC時,BC=2-(5-1)=故選:D.本題考查的是黃金分割的概念,把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,他們的比值(5-1二、填空題(本大題共5個小題,每小題4分,共20分)9、10或2【解析】
本題已知直角三角形的兩邊長,但未明確這兩條邊是直角邊還是斜邊,所以求第三邊的長必須分類討論,即8是斜邊或直角邊的兩種情況,然后利用勾股定理求解.【詳解】設(shè)第三邊為x,(1)若8是直角邊,則第三邊x是斜邊,由勾股定理得,62+82=x2解得:x=10,(2)若8是斜邊,則第三邊x為直角邊,由勾股定理得,62+x2=82,解得.故第三邊長為10或.故答案為:10或.本題考查了利用勾股定理解直角三角形的能力,當(dāng)已知條件中明確哪是斜邊時,要注意討論,一些學(xué)生往往忽略這一點,造成丟解.10、1【解析】
連接DC,由垂直平分線的性質(zhì)可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用銳角三角函數(shù)定義可得CD的長,利用“在直角三角形中,30°角所對的直角邊等于斜邊的一半.”可得DE的長.【詳解】解:連接DC,∵∠B=90°,∠A=30°,DE是斜邊AC的垂直平分線,∴DC=DA,∴∠ACD=∠A=30°,∠BCD=30°,,∵∠BCD=30°,,∴DE=1,故答案為1.本題主要考查了直角三角形的性質(zhì)和垂直平分線的性質(zhì),做出恰當(dāng)?shù)妮o助線是解答此題的關(guān)鍵.11、【解析】
利用重合部分的角相等和等角的余角相等,逐步判定∠2=∠COB
,即可完成解答。【詳解】解:如圖∵都是正方形∴∠FOC=∠EOB=∠DOA=又∵∠2+∠EOC=∠BOC+∠EOC=∴∠2=∠BOC∴∠1+∠2+∠3=∠DOA=故答案為。本題主要考查了正方形的性質(zhì)以及重合部分的角相等和等角的余角相等的知識,其中確定∠2=∠BOC是解題的關(guān)鍵。12、【解析】
通過四邊形ABCD是矩形以及,得到△FEM是等邊三角形,根據(jù)含30°直角三角形的性質(zhì)以及勾股定理得到KM,NK,KE的值,進而得到NE的值,再利用30°直角三角形的性質(zhì)及勾股定理得到BN,BE即可.【詳解】解:如圖,設(shè)NE交AD于點K,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC∵,∴△BCE為等邊三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等邊三角形,F(xiàn)M=FE=EM=2,∵EN⊥BE,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,KE=,∴NE=NK+KE=6+,∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+,∴BE=,∴BC=BE=,故答案為:本題考查了矩形,等邊三角形的性質(zhì),以及含30°直角三角形的性質(zhì)與勾股定理的應(yīng)用,解題的關(guān)鍵是靈活運用30°直角三角形的性質(zhì).13、1.【解析】
先連接AC,求出AC的長,再判斷出△ABC的形狀,繼而根據(jù)三角形面積公式進行求解即可.【詳解】連接AC,∵△ACD是直角三角形,∴,因為102+122=132,所以△ABC是直角三角形,則要求的面積即是兩個直角三角形的面積差,即×24×10-×6×8=120-24=1,故答案為:1.本題考查了勾股定理及其逆定理,正確添加輔助線,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.三、解答題(本大題共5個小題,共48分)14、見解析.【解析】
首先根據(jù)平行線的性質(zhì)可得∠DBC=∠BDA=90°,再根據(jù)直角三角形的性質(zhì)可得DE=12AB,BF=12DC,然后可得AB=CD,再證明Rt△ADB≌Rt△CBD可得【詳解】證明:∵AD∥BC,BD⊥AD,∴∠DBC=∠BDA=90°,∵在RtΔADB中,E是AB∴DE=1同理:BF=1∵DE=BF,∴AB=CD,在RtΔADB和RtAB=CD,∴RtΔADB?∴AD=BC.∴四邊形ABCD是平行四邊形.此題主要考查了平行四邊形的判定,全等三角形的判定與性質(zhì),關(guān)鍵是找出證明Rt△ADB≌Rt△CBD的條件.15、(1),;(2)乙種水果銷量比較穩(wěn)定.【解析】
(1)根據(jù)平均數(shù)的公式計算即可.(2)根據(jù)方差公式計算,再根據(jù)方差的意義“方差越小越穩(wěn)定”判斷銷售量哪家更穩(wěn)定.【詳解】(1),(2),,,所以乙種水果銷量比較穩(wěn)定.本題考查了求平均數(shù)和方差,熟練掌握平均數(shù)和方差公式是解答本題的關(guān)鍵,16、(1)證明見試題解析;(2)DF=DG.【解析】
(1)利用院內(nèi)接四邊形的性質(zhì)得到∠DEC=∠B,然后利用等角對等邊得到結(jié)論.(2)利用旋轉(zhuǎn)的性質(zhì)及圓內(nèi)接四邊形的性質(zhì)證得△EDF≌△CDG后即可得到結(jié)論.【詳解】(1)∵四邊形ABDE內(nèi)接于⊙O,∴∠B+∠AED=180°,∵∠DEC+∠AED=180°,∴∠DEC=∠B,∵AB=AC,∴∠C=∠B,∴∠DEC=∠C,∴DE=DC;(2)∵四邊形ABDE內(nèi)接于⊙O,∴∠A+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠A=∠EDC,∵OA=OE,∴∠A=∠OEA,∵∠OEA=∠CEF,∴∠A=∠CEF,∴∠EDC=∠CEF,∵∠EDC+∠DEC+∠DCE=180°,∴∠CEF+∠DEC+∠DCE=180°,即∠DEF+∠DCE=180°,又∵∠DCG+∠DCE=180°,∴∠DEF=∠DCG,∵∠EDC旋轉(zhuǎn)得到∠FDG,∴∠EDC=∠FDG,∴∠EDC﹣∠FDC=∠FDG﹣∠FDC,即∠EDF=∠CDG,∵DE=DC,∴△EDF≌△CDG(ASA),∴DF=DG.17、(2)證明見解析.(2)OG∥BF且OG=BF;證明見解析.(3)2.【解析】
(2)利用正方形的性質(zhì),由全等三角形的判定定理SAS即可證得△BCE≌△DCF;(2)首先證明△BDG≌△BGF,從而得到OG是△DBF的中位線,即可得出答案;(3)設(shè)BC=x,則DC=x,BD=x,由△BGD≌△BGF,得出BF=BD,CF=(-2)x,利用勾股定理DF2=DC2+CF2,解得x2=2,即正方形ABCD的面積是2.【詳解】(2)證明:在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)OG∥BF且OG=BF,理由:如圖,∵BE平分∠DBC,∴∠2=∠3,在△BGD和△BGF中,,∴△BGD≌△BGF(ASA),∴DG=GF,∵O為正方形ABCD的中心,∴DO=OB,∴OG是△DBF的中位線,∴OG∥BF且OG=BF;(3)設(shè)BC=x,則DC=x,BD=x,由(2)知△BGD≌△BGF,∴BF=BD,∴CF=(-2)x,∵DF2=DC2+CF2,∴x2+[(-2)x]2=8-4,解得x2=2,∴正方形ABCD的面積是2.考點:2.正方形的性質(zhì);2.全等三角形的判定與性質(zhì);3.勾股定理.18、證明見解析.【解析】【分析】根據(jù)平行四邊形的性質(zhì)以及全等三角形的判定方法證明出△DOE≌△BOF,得到OE=OF,利用對角線互相平分的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進而利用對角線互相垂直的平行四邊形是菱形得出四邊形BFDE為菱形.【詳解】∵在?ABCD中,O為對角線BD的中點,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA),∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵EF⊥BD,∴四邊形BFDE為菱形.【點睛】本題考查了菱形的判定,平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì)等知識,得出OE=OF是解題關(guān)鍵.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】
解:設(shè)方程的另一個根為n,則有?2+n=?5,解得:n=?3.故答案為本題考查一元二次方程的兩根是,則20、1【解析】試題分析:由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對角線互相平分,可得OA的長,然后由AB⊥AC,AB=8,AC=12,根據(jù)勾股定理可求得OB的長,繼而求得答案.解:∵四邊形ABCD是平行四邊形,AC=12,∴OA=AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB===10,∴BD=2OB=1.故答案為:1.21、(1)、(2)、(4).【解析】∵四邊形ABCD是正方形,
∴AB=AD=CD=BC,∠BAD=∠ADC=90°.
∵CE=DF,
∴AD-DF=CD-CE,
即AF=DE.
在△BAF和△ADE中,,∴△BAF≌△ADE(SAS),
∴AE=BF,S△BAF=S△ADE,∠ABF=∠DAE,
∴S△BAF-S△AOF=S△ADE-S△AOF,
即S△AOB=S四邊形DEOF.
∵∠ABF+∠AFB=90°,
∴∠EAF+∠AFB=90°,
∴∠AOF=90°,
∴AE⊥BF;
連接EF,在Rt△DFE中,∠D=90°,
∴EF>DE,
∴EF>AF,
若AO=OE,且AE⊥BF;
∴AF=EF,與EF>AF矛盾,
∴假設(shè)不成立,
∴AO≠OE.
∴①②④是正確的,
故答案是:①②④.【點睛】本題考查了正方形的性質(zhì)的運用,全等三角形的判定與性質(zhì)的運用,三角形的面積關(guān)系的運用及直角三角形的性質(zhì)的運用,在解答中求證三角形全等是關(guān)鍵.22、4【解析】
把x=代入各函數(shù)求出對應(yīng)的y值,即可求解.【詳解】x=代入得x=代入得∴4此題主要考查反比例函數(shù)的性質(zhì),解題的關(guān)鍵是根據(jù)題意代入函數(shù)關(guān)系式進行求解.23、,【解析】
此題根據(jù)題意可以確定max(2,2x-1),然后即可得到一個一元二次方程,解此方程即可求出方程的解.【詳解】①當(dāng)2x-1>2時,∵max(2,2x-1)=2,∴xmax(2,2x-1)=2x,∴2x=x+1解得,x=1,此時2x-1>2不成立;②當(dāng)2x-1<2時,∵max(2,2x-1)=2x-1,∴xmax(2,2x-1)=2x2-x,∴2x2-x=x+1解得,,.故答案為:,.本題立意新穎,借助新運算,實際考查解一元二次方程的解法.二、解答題(本大題共3個小題,共30分)24、(1)見解析;(2)【解析】
(1)由△AEF、△ABC是等腰直角三角形,易證得△FAD∽△CAE,然后由相似三角形的對應(yīng)邊成比例,可得,又由等腰直角三角形的性質(zhì),可得AF=AE,即可證得;(2)首先設(shè)BE=a,由射影定理,可求得DB的長,繼而可求得DA的長,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國黃雞養(yǎng)殖行業(yè)發(fā)展趨勢與投資戰(zhàn)略研究研究報告
- 2025-2030中國食用菌生產(chǎn)機械行業(yè)市場運行分析及發(fā)展趨勢與投資研究報告
- 2025-2030中國飛機租賃行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 建筑工程承包人應(yīng)急響應(yīng)計劃
- 細菌性角膜炎免疫療法與干細胞再生的聯(lián)合治療方案-洞察闡釋
- 建筑工程公司季度技能提升計劃
- 區(qū)塊鏈在企業(yè)和個人中的應(yīng)用-洞察闡釋
- 2025四年級下冊課外拓展復(fù)習(xí)計劃
- 部編版五年級語文復(fù)習(xí)班教學(xué)計劃
- 基于區(qū)塊鏈的智慧物流供應(yīng)鏈智能物流模式-洞察闡釋
- 【審計工作底稿模板】FH應(yīng)付利息
- 胃腸減壓技術(shù)操作流程.
- 工貿(mào)企業(yè)安全管理臺賬資料
- 三方協(xié)議書(消防)
- 工序能耗計算方法及等級指標(biāo)
- 預(yù)激綜合征臨床心電圖的當(dāng)前觀點
- 閥門檢修作業(yè)指導(dǎo)書講解
- 畢業(yè)設(shè)計(論文)秸稈粉碎機的設(shè)計(含全套圖紙)
- 樁基鋼筋籠吊裝計算書(共16頁)
- 危大工程驗收表-
- 葉輪動平衡試驗報告A
評論
0/150
提交評論