2022年江西省鷹潭市中考五模數(shù)學(xué)試題含解析_第1頁(yè)
2022年江西省鷹潭市中考五模數(shù)學(xué)試題含解析_第2頁(yè)
2022年江西省鷹潭市中考五模數(shù)學(xué)試題含解析_第3頁(yè)
2022年江西省鷹潭市中考五模數(shù)學(xué)試題含解析_第4頁(yè)
2022年江西省鷹潭市中考五模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年江西省鷹潭市中考五模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.在剛剛結(jié)束的中考英語(yǔ)聽(tīng)力、口語(yǔ)測(cè)試中,某班口語(yǔ)成績(jī)情況如圖所示,則下列說(shuō)法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為22.如圖所示,在折紙活動(dòng)中,小明制作了一張△ABC紙片,點(diǎn)D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.70° B.110° C.130° D.140°3.截至2010年“費(fèi)爾茲獎(jiǎng)”得主中最年輕的8位數(shù)學(xué)家獲獎(jiǎng)時(shí)的年齡分別為29,28,29,31,31,31,29,31,則由年齡組成的這組數(shù)據(jù)的中位數(shù)是()A.28 B.29 C.30 D.314.下列說(shuō)法中,錯(cuò)誤的是()A.兩個(gè)全等三角形一定是相似形B.兩個(gè)等腰三角形一定相似C.兩個(gè)等邊三角形一定相似D.兩個(gè)等腰直角三角形一定相似5.甲、乙兩盒中分別放入編號(hào)為1、2、3、4的形狀相同的4個(gè)小球,從甲盒中任意摸出一球,再?gòu)囊液兄腥我饷鲆磺颍瑢汕蚓幪?hào)數(shù)相加得到一個(gè)數(shù),則得到數(shù)()的概率最大.A.3 B.4 C.5 D.66.下列計(jì)算正確的是A.a(chǎn)2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-47.如圖,按照三視圖確定該幾何體的側(cè)面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm28.如圖所示是8個(gè)完全相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.9.在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為()A.3 B. C. D.10.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個(gè)銳角之和一定是鈍角D.相等的兩個(gè)角是對(duì)頂角11.如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④12.有以下圖形:平行四邊形、矩形、等腰三角形、線段、菱形,其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有()A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在平面直角坐標(biāo)系中,菱形OABC的面積為12,點(diǎn)B在y軸上,點(diǎn)C在反比例函數(shù)y=的圖象上,則k的值為_(kāi)_______.14.如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡CD旁一棵樹(shù)AB的高度,他們先在點(diǎn)C處測(cè)得樹(shù)頂B的仰角為60°,然后在坡頂D測(cè)得樹(shù)頂B的仰角為30°,已知DE⊥EA,斜坡CD的長(zhǎng)度為30m,DE的長(zhǎng)為15m,則樹(shù)AB的高度是_____m.15.因式分解:.16.把16a3﹣ab2因式分解_____.17.如果一個(gè)矩形的面積是40,兩條對(duì)角線夾角的正切值是,那么它的一條對(duì)角線長(zhǎng)是__________.18.有四張質(zhì)地、大小、反面完全相同的不透明卡片,正面分別寫(xiě)著數(shù)字1,2,3,4,現(xiàn)把它們的正面向下,隨機(jī)擺放在桌面上,從中任意抽出一張,則抽出的數(shù)字是奇數(shù)的概率是.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)今年3月12日植樹(shù)節(jié)期間,學(xué)校預(yù)購(gòu)進(jìn)A,B兩種樹(shù)苗.若購(gòu)進(jìn)A種樹(shù)苗3棵,B種樹(shù)苗5棵,需2100元;若購(gòu)進(jìn)A種樹(shù)苗4棵,B種樹(shù)苗10棵,需3800元.求購(gòu)進(jìn)A,B兩種樹(shù)苗的單價(jià);若該學(xué)校準(zhǔn)備用不多于8000元的錢(qián)購(gòu)進(jìn)這兩種樹(shù)苗共30棵,求A種樹(shù)苗至少需購(gòu)進(jìn)多少棵.20.(6分)如圖,直線y=﹣x+3分別與x軸、y交于點(diǎn)B、C;拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B、C,與x軸的另一個(gè)交點(diǎn)為點(diǎn)A(點(diǎn)A在點(diǎn)B的左側(cè)),對(duì)稱軸為l1,頂點(diǎn)為D.(1)求拋物線y=x2+bx+c的解析式.(2)點(diǎn)M(1,m)為y軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M作直線l2平行于x軸,與拋物線交于點(diǎn)P(x1,y1),Q(x2,y2),與直線BC交于點(diǎn)N(x3,y3),且x2>x1>1.①結(jié)合函數(shù)的圖象,求x3的取值范圍;②若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn),求m的值.21.(6分)如圖,將連續(xù)的奇數(shù)1,3,5,7…按如圖中的方式排成一個(gè)數(shù),用一個(gè)十字框框住5個(gè)數(shù),這樣框出的任意5個(gè)數(shù)中,四個(gè)分支上的數(shù)分別用a,b,c,d表示,如圖所示.(1)計(jì)算:若十字框的中間數(shù)為17,則a+b+c+d=______.(2)發(fā)現(xiàn):移動(dòng)十字框,比較a+b+c+d與中間的數(shù).猜想:十字框中a、b、c、d的和是中間的數(shù)的______;(3)驗(yàn)證:設(shè)中間的數(shù)為x,寫(xiě)出a、b、c、d的和,驗(yàn)證猜想的正確性;(4)應(yīng)用:設(shè)M=a+b+c+d+x,判斷M的值能否等于2020,請(qǐng)說(shuō)明理由.22.(8分)如圖,直線y=﹣x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),與x軸的另外一個(gè)交點(diǎn)為C填空:b=,c=,點(diǎn)C的坐標(biāo)為.如圖1,若點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為m.PQ與OQ的比值為y,求y與m的數(shù)學(xué)關(guān)系式,并求出PQ與OQ的比值的最大值.如圖2,若點(diǎn)P是第四象限的拋物線上的一點(diǎn).連接PB與AP,當(dāng)∠PBA+∠CBO=45°時(shí).求△PBA的面積.23.(8分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AB于點(diǎn)F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長(zhǎng).24.(10分)在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請(qǐng)判斷△APQ是什么形狀的三角形?試說(shuō)明你的結(jié)論.25.(10分)解不等式組,并寫(xiě)出其所有的整數(shù)解.26.(12分)如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與),軸交于點(diǎn)C.拋物線的對(duì)稱軸是直線x=﹣2,D是拋物線的頂點(diǎn).(1)求二次函數(shù)的表達(dá)式;(2)當(dāng)﹣<x<1時(shí),請(qǐng)求出y的取值范圍;(3)連接AD,線段OC上有一點(diǎn)E,點(diǎn)E關(guān)于直線x=﹣2的對(duì)稱點(diǎn)E'恰好在線段AD上,求點(diǎn)E的坐標(biāo).27.(12分)如圖所示,點(diǎn)C在線段AB上,AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).求線段MN的長(zhǎng).若C為線段AB上任意一點(diǎn),滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長(zhǎng)度嗎?并說(shuō)明理由.若C在線段AB的延長(zhǎng)線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點(diǎn),你能猜想出MN的長(zhǎng)度嗎?請(qǐng)畫(huà)出圖形,寫(xiě)出你的結(jié)論,并說(shuō)明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識(shí)即可判斷;【詳解】觀察圖象可知,共有50個(gè)學(xué)生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【點(diǎn)睛】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.2、D【解析】∵四邊形ADA'E的內(nèi)角和為(4-2)?180°=360°,而由折疊可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.3、C【解析】

根據(jù)中位數(shù)的定義即可解答.【詳解】解:把這些數(shù)從小到大排列為:28,29,29,29,31,31,31,31,最中間的兩個(gè)數(shù)的平均數(shù)是:=30,則這組數(shù)據(jù)的中位數(shù)是30;故本題答案為:C.【點(diǎn)睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).4、B【解析】

根據(jù)相似圖形的定義,結(jié)合選項(xiàng)中提到的圖形,對(duì)選項(xiàng)一一分析,選出正確答案.【詳解】解:A、兩個(gè)全等的三角形一定相似,正確;B、兩個(gè)等腰三角形一定相似,錯(cuò)誤,等腰三角形的形狀不一定相同;C、兩個(gè)等邊三角形一定相似;正確,等邊三角形形狀相同,只是大小不同;D、兩個(gè)等腰直角三角形一定相似,正確,等腰直角三角形形狀相同,只是大小不同.故選B.【點(diǎn)睛】本題考查的是相似形的定義,聯(lián)系圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.特別注意,本題是選擇錯(cuò)誤的,一定要看清楚題.5、C【解析】解:甲和乙盒中1個(gè)小球任意摸出一球編號(hào)為1、2、3、1的概率各為,其中得到的編號(hào)相加后得到的值為{2,3,1,5,6,7,8}和為2的只有1+1;和為3的有1+2;2+1;和為1的有1+3;2+2;3+1;和為5的有1+1;2+3;3+2;1+1;和為6的有2+1;1+2;和為7的有3+1;1+3;和為8的有1+1.故p(5)最大,故選C.6、B【解析】【分析】根據(jù)同底數(shù)冪乘法、冪的乘方、合并同類項(xiàng)法則、完全平方公式逐項(xiàng)進(jìn)行計(jì)算即可得.【詳解】A.a2·a2=a4,故A選項(xiàng)錯(cuò)誤;B.(-a2)3=-a6,正確;C.3a2-6a2=-3a2,故C選項(xiàng)錯(cuò)誤;D.(a-2)2=a2-4a+4,故D選項(xiàng)錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了同底數(shù)冪的乘法、冪的乘方、合并同類項(xiàng)、完全平方公式,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.7、A【解析】

由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長(zhǎng)和底面半徑,從而確定其側(cè)面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個(gè)幾何體應(yīng)該是圓錐;根據(jù)三視圖知:該圓錐的母線長(zhǎng)為6cm,底面半徑為8÷1=4cm,故側(cè)面積=πrl=π×6×4=14πcm1.故選:A.【點(diǎn)睛】此題考查學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查.8、A【解析】分析:根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、側(cè)面和上面看所得到的圖形,從而得出該幾何體的左視圖.詳解:該幾何體的左視圖是:故選A.點(diǎn)睛:本題考查了學(xué)生的思考能力和對(duì)幾何體三種視圖的空間想象能力.9、A【解析】【分析】根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值為=3,故選A.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,能熟記銳角三角函數(shù)的定義的內(nèi)容是解此題的關(guān)鍵.10、B【解析】

利用對(duì)頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義分別判斷后即可確定正確的選項(xiàng).【詳解】A、若a2=b2,則a=±b,錯(cuò)誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個(gè)銳角的和不一定是鈍角,故錯(cuò)誤,是假命題;D、相等的兩個(gè)角不一定是對(duì)頂角,故錯(cuò)誤,是假命題.故選B.【點(diǎn)睛】考查了命題與定理的知識(shí),解題的關(guān)鍵是了解對(duì)頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義,難度不大.11、B【解析】

由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點(diǎn),∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過(guò)點(diǎn)E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯(cuò)誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點(diǎn)睛】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時(shí)根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長(zhǎng)度是關(guān)鍵.12、C【解析】矩形,線段、菱形是軸對(duì)稱圖形,也是中心對(duì)稱圖形,符合題意;等腰三角形是軸對(duì)稱圖形,不是中心對(duì)稱圖形,不符合題意;平行四邊形不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意.共3個(gè)既是軸對(duì)稱圖形又是中心對(duì)稱圖形.故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、-6【解析】因?yàn)樗倪呅蜲ABC是菱形,所以對(duì)角線互相垂直平分,則點(diǎn)A和點(diǎn)C關(guān)于y軸對(duì)稱,點(diǎn)C在反比例函數(shù)上,設(shè)點(diǎn)C的坐標(biāo)為(x,),則點(diǎn)A的坐標(biāo)為(-x,),點(diǎn)B的坐標(biāo)為(0,),因此AC=-2x,OB=,根據(jù)菱形的面積等于對(duì)角線乘積的一半得:,解得14、1【解析】

先根據(jù)CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數(shù)的定義即可得出結(jié)論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點(diǎn)睛】本題考查的是解直角三角形的應(yīng)用-仰角俯角問(wèn)題,熟記銳角三角函數(shù)的定義是解答此題的關(guān)鍵.15、.【解析】要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒(méi)有公因式,若有公因式,則把它提取出來(lái),之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.16、a(4a+b)(4a﹣b)【解析】

首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案為:a(4a+b)(4a-b).【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.17、1.【解析】

如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問(wèn)題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.18、【解析】試題分析:這四個(gè)數(shù)中,奇數(shù)為1和3,則P(抽出的數(shù)字是奇數(shù))=2÷4=.考點(diǎn):概率的計(jì)算.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)A種樹(shù)苗的單價(jià)為200元,B種樹(shù)苗的單價(jià)為300元;(2)10棵【解析】試題分析:(1)設(shè)B種樹(shù)苗的單價(jià)為x元,則A種樹(shù)苗的單價(jià)為y元.則由等量關(guān)系列出方程組解答即可;(2)設(shè)購(gòu)買A種樹(shù)苗a棵,則B種樹(shù)苗為(30﹣a)棵,然后根據(jù)總費(fèi)用和兩種樹(shù)苗的棵數(shù)關(guān)系列出不等式解答即可.試題解析:(1)設(shè)B種樹(shù)苗的單價(jià)為x元,則A種樹(shù)苗的單價(jià)為y元,可得:,解得:,答:A種樹(shù)苗的單價(jià)為200元,B種樹(shù)苗的單價(jià)為300元.(2)設(shè)購(gòu)買A種樹(shù)苗a棵,則B種樹(shù)苗為(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A種樹(shù)苗至少需購(gòu)進(jìn)10棵.考點(diǎn):1.一元一次不等式的應(yīng)用;2.二元一次方程組的應(yīng)用20、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】

(2)由直線y=﹣x+3分別與x軸、y交于點(diǎn)B、C求得點(diǎn)B、C的坐標(biāo),再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點(diǎn)坐標(biāo)為D(2,﹣2),當(dāng)直線l2經(jīng)過(guò)點(diǎn)D時(shí)求得m=﹣2;當(dāng)直線l2經(jīng)過(guò)點(diǎn)C時(shí)求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當(dāng)直線l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間和當(dāng)直線l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點(diǎn)B(3,2),C(2,3)的坐標(biāo)代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點(diǎn)為D(2,﹣2),當(dāng)直線l2經(jīng)過(guò)點(diǎn)D時(shí),m=﹣2;當(dāng)直線l2經(jīng)過(guò)點(diǎn)C時(shí),m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當(dāng)直線l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間,若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn),則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點(diǎn)P、Q關(guān)于拋物線的對(duì)稱軸l2對(duì)稱,又拋物線的對(duì)稱軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點(diǎn)Q(x2,y2)的坐標(biāo)代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負(fù)值已舍去),∴m=()2﹣4×+3=如圖②,當(dāng)直線l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間,若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn),則得PN=NQ.由上可得點(diǎn)P、Q關(guān)于直線l2對(duì)稱,∴點(diǎn)N在拋物線的對(duì)稱軸l2:x=2,又點(diǎn)N在直線y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值為或2.【點(diǎn)睛】本題是二次函數(shù)綜合題,本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、函數(shù)圖象的交點(diǎn)、線段的中點(diǎn)及分類討論思想等知識(shí).在(2)中注意待定系數(shù)法的應(yīng)用;在(2)①注意利用數(shù)形結(jié)合思想;在(2)②注意分情況討論.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度較大.21、(1)68

;(2)4倍;(3)4x,猜想正確,見(jiàn)解析;(4)M的值不能等于1,見(jiàn)解析.【解析】

(1)直接相加即得到答案;(2)根據(jù)(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合數(shù)表里數(shù)的特征,故不能等于1.【詳解】(1)5+15+19+29=68,故答案為68;(2)根據(jù)(1)猜想a+b+c+d=4x,答案為:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正確;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整個(gè)數(shù)表所有的數(shù)都為奇數(shù),故不成立,∴M的值不能等于1.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用.當(dāng)解得方程的解后,要觀察是否滿足題目和實(shí)際要求再進(jìn)行取舍.22、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)S△PBA=3.【解析】

(3)通過(guò)一次函數(shù)解析式確定A、B兩點(diǎn)坐標(biāo),直接利用待定系數(shù)法求解即可得到b,c的值,令y=4便可得C點(diǎn)坐標(biāo).

(2)分別過(guò)P、Q兩點(diǎn)向x軸作垂線,通過(guò)PQ與OQ的比值為y以及平行線分線段成比例,找到,設(shè)點(diǎn)P坐標(biāo)為(m,-m2+m+2),Q點(diǎn)坐標(biāo)(n,-n+2),表示出ED、OD等長(zhǎng)度即可得y與m、n之間的關(guān)系,再次利用即可求解.

(3)求得P點(diǎn)坐標(biāo),利用圖形割補(bǔ)法求解即可.【詳解】(3)∵直線y=﹣x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.∴A(2,4),B(4,2).又∵拋物線過(guò)B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴拋物線解析式為,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如圖3,分別過(guò)P、Q作PE、QD垂直于x軸交x軸于點(diǎn)E、D.設(shè)P(m,﹣m2+m+2),Q(n,﹣n+2),則PE=﹣m2+m+2,QD=﹣n+2.又∵=y(tǒng).∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ與OQ的比值的最大值為.(3)如圖2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此時(shí)PB過(guò)點(diǎn)(2,4).設(shè)直線PB解析式為,y=kx+2.把點(diǎn)(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直線PB解析式為,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.當(dāng)x=5時(shí),﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).過(guò)P作PH⊥cy軸于點(diǎn)H.則S四邊形OHPA=(OA+PH)?OH=(2+5)×7=24.S△OAB=OA?OB=×2×2=7.S△BHP=PH?BH=×5×3=35.∴S△PBA=S四邊形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【點(diǎn)睛】本題考查了函數(shù)圖象與坐標(biāo)軸交點(diǎn)坐標(biāo)的確定,以及利用待定系數(shù)法求解拋物線解析式常數(shù)的方法,再者考查了利用數(shù)形結(jié)合的思想將圖形線段長(zhǎng)度的比化為坐標(biāo)軸上點(diǎn)之間的線段長(zhǎng)度比的思維能力.還考查了運(yùn)用圖形割補(bǔ)法求解坐標(biāo)系內(nèi)圖形的面積的方法.23、(1)證明見(jiàn)解析;(2)4.8.【解析】

(1)連結(jié)OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結(jié)BE,根據(jù)直徑所對(duì)的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結(jié)OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結(jié)BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點(diǎn)睛】本題考查了切線的性質(zhì)定理、圓周角定理、等腰三角形的性質(zhì)與判定、勾股定理及直角三角形的兩種面積求法等知識(shí)點(diǎn),熟練運(yùn)算這些知識(shí)是解決問(wèn)題的關(guān)鍵.24、(1)證明見(jiàn)解析;(2)△APQ是等邊三角形.【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,再根據(jù)SAS證明△ABP≌△ACQ;(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.【點(diǎn)睛】本題考查了全等三角形的判定,考查

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論