




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖南省長沙市博才實驗中學初中數學畢業考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.濕地旅游愛好者小明了解到鄂東南市水資源總量為42.4億立方米,其中42.4億用科學記數法可表示為()A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×1082.如圖,二次函數y=ax2+bx+c(a≠0)的圖象經過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結論正確的有()A.1個 B.2個 C.3個 D.4個3.下列命題正確的是()A.內錯角相等B.-1是無理數C.1的立方根是±1D.兩角及一邊對應相等的兩個三角形全等4.如圖,將半徑為2的圓形紙片折疊后,圓弧恰好經過圓心,則折痕的長度為()A. B.2 C. D.5.目前,世界上能制造出的最小晶體管的長度只有0.00000004m,將0.00000004用科學記數法表示為()A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×1086.如果數據x1,x2,…,xn的方差是3,則另一組數據2x1,2x2,…,2xn的方差是()A.3 B.6 C.12 D.57.設點和是反比例函數圖象上的兩個點,當<<時,<,則一次函數的圖象不經過的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限8.下列運算正確的是()A.a12÷a4=a3 B.a4?a2=a8 C.(﹣a2)3=a6 D.a?(a3)2=a79.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.10.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.二、填空題(共7小題,每小題3分,滿分21分)11.已知正方形ABCD的邊長為8,E為平面內任意一點,連接DE,將線段DE繞點D順時針旋轉90°得到DG,當點B,D,G在一條直線上時,若DG=2,則CE的長為_____.12.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.13.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構成的圖形的面積為__________.14.如圖△ABC中,AB=AC=8,∠BAC=30°,現將△ABC繞點A逆時針旋轉30°得到△ACD,延長AD、BC交于點E,則DE的長是_____.15.計算:+=______.16.數學家吳文俊院士非常重視古代數學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發,利用“出入相補”原理復原了《海島算經》九題古證.(以上材料來源于《古證復原的原則》《吳文俊與中國數學》和《古代世界數學泰斗劉徽》)請根據上圖完成這個推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.17.圓錐的底面半徑是4cm,母線長是5cm,則圓錐的側面積等于_____cm1.三、解答題(共7小題,滿分69分)18.(10分)解分式方程:=119.(5分)已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長;(II)如圖②,若∠CAB=60°,求BD、BC的長.20.(8分)某小學為了了解學生每天完成家庭作業所用時間的情況,從每班抽取相同數量的學生進行調查,并將所得數據進行整理,制成條形統計圖和扇形統計圖如下:補全條形統計圖;求扇形統計圖扇形D的圓心角的度數;若該中學有2000名學生,請估計其中有多少名學生能在1.5小時內完成家庭作業?21.(10分)如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,FG∥BE交AE于點G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FO?ED=OD?EF.22.(10分)已知關于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數根x1,x1.求實數k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數k的值.23.(12分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.24.(14分)(1)計算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化簡,再求值:÷(2+),其中a=.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.【詳解】42.4億=4240000000,用科學記數法表示為:4.24×1.故選C.【點睛】考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.2、D【解析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當x=2時,y=4a+2b+c<0,當x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數圖象與系數的關系,二次函數中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數決定根的判別式的符號,注意二次函數圖象上特殊點的特點.3、D【解析】解:A.兩直線平行,內錯角相等,故A錯誤;B.-1是有理數,故B錯誤;C.1的立方根是1,故C錯誤;D.兩角及一邊對應相等的兩個三角形全等,正確.故選D.4、C【解析】
過O作OC⊥AB,交圓O于點D,連接OA,由垂徑定理得到C為AB的中點,再由折疊得到CD=OC,求出OC的長,在直角三角形AOC中,利用勾股定理求出AC的長,即可確定出AB的長.【詳解】過O作OC⊥AB,交圓O于點D,連接OA,由折疊得到CD=OC=OD=1cm,在Rt△AOC中,根據勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,則AB=2AC=2cm.故選C.【點睛】此題考查了垂徑定理,勾股定理,以及翻折的性質,熟練掌握垂徑定理是解本題的關鍵.5、C【解析】
科學記數法的表示形式為a×10的形式,其中1≤a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】0.00000004=4×10,故選C【點睛】此題考查科學記數法,難度不大6、C【解析】【分析】根據題意,數據x1,x2,…,xn的平均數設為a,則數據2x1,2x2,…,2xn的平均數為2a,再根據方差公式進行計算:即可得到答案.【詳解】根據題意,數據x1,x2,…,xn的平均數設為a,則數據2x1,2x2,…,2xn的平均數為2a,根據方差公式:=3,則==4×=4×3=12,故選C.【點睛】本題主要考查了方差公式的運用,關鍵是根據題意得到平均數的變化,再正確運用方差公式進行計算即可.7、A【解析】∵點和是反比例函數圖象上的兩個點,當<<1時,<,即y隨x增大而增大,∴根據反比例函數圖象與系數的關系:當時函數圖象的每一支上,y隨x的增大而減小;當時,函數圖象的每一支上,y隨x的增大而增大.故k<1.∴根據一次函數圖象與系數的關系:一次函數的圖象有四種情況:①當,時,函數的圖象經過第一、二、三象限;②當,時,函數的圖象經過第一、三、四象限;③當,時,函數的圖象經過第一、二、四象限;④當,時,函數的圖象經過第二、三、四象限.因此,一次函數的,,故它的圖象經過第二、三、四象限,不經過第一象限.故選A.8、D【解析】
分別根據同底數冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【詳解】解:A、a12÷a4=a8,此選項錯誤;
B、a4?a2=a6,此選項錯誤;
C、(-a2)3=-a6,此選項錯誤;
D、a?(a3)2=a?a6=a7,此選項正確;
故選D.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數冪的除法、乘法和冪的乘方的運算法則.9、C【解析】試題解析:A.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C.既是中心對稱圖又是軸對稱圖形,故本選項正確;D.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.10、D【解析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、2或2.【解析】
本題有兩種情況,一種是點在線段的延長線上,一種是點在線段上,解題過程一樣,利用正方形和三角形的有關性質,求出、的值,再由勾股定理求出的值,根據證明,可得,即可得到的長.【詳解】解:當點在線段的延長線上時,如圖3所示.過點作于,是正方形的對角線,,,在中,由勾股定理,得:,在和中,,,,當點在線段上時,如圖4所示.過作于.是正方形的對角線,,在中,由勾股定理,得:在和中,,,,故答案為或.【點睛】本題主要考查了勾股定理和三角形全等的證明.12、有兩個不相等的實數根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數根.故答案為有兩個不相等的實數根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.13、12.2【解析】
∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.14、【解析】
過點作于,根據三角形的性質及三角形內角和定理可計算再由旋轉可得,,根據三角形外角和性質計算,根據含角的直角三角形的三邊關系得和的長度,進而得到的長度,然后利用得到與的長度,于是可得.【詳解】如圖,過點作于,∵,∴.∵將繞點逆時針旋轉,使點落在點處,此時點落在點處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.【點睛】本題考查三角形性質的綜合應用,要熟練掌握等腰三角形的性質,含角的直角三角形的三邊關系,旋轉圖形的性質.15、1.【解析】
利用同分母分式加法法則進行計算,分母不變,分子相加.【詳解】解:原式=.【點睛】本題考查同分母分式的加法,掌握法則正確計算是本題的解題關鍵.16、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據矩形的性質:矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點睛】本題考查矩形的性質,解題的關鍵是靈活運用矩形的對角線把矩形分成面積相等的兩部分這個性質,屬于中考常考題型.17、10π【解析】
解:根據圓錐的側面積公式可得這個圓錐的側面積=?1π?4?5=10π(cm1).故答案為:10π【點睛】本題考查圓錐的計算.三、解答題(共7小題,滿分69分)18、x=1【解析】
分式方程變形后去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【詳解】化為整式方程得:2﹣3x=x﹣2,解得:x=1,經檢驗x=1是原方程的解,所以原方程的解是x=1.【點睛】此題考查了解分式方程,解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.解分式方程一定注意要驗根.19、(1)BD=CD=5;(2)BD=5,BC=5.【解析】
(1)利用圓周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解決問題;(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5,再根據垂徑定理求出BE即可解決問題.【詳解】(1)∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如圖②,連接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,設垂足為E,∴BE=EC=OB?sin60°=,∴BC=5.【點睛】本題考查圓周角定理,垂徑定理,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,屬于中考常考題型.20、(1)補圖見解析;(2)27°;(3)1800名【解析】
(1)根據A類的人數是10,所占的百分比是25%即可求得總人數,然后根據百分比的意義求得B類的人數;
(2)用360°乘以對應的比例即可求解;
(3)用總人數乘以對應的百分比即可求解.【詳解】(1)抽取的總人數是:10÷25%=40(人),在B類的人數是:40×30%=12(人).;(2)扇形統計圖扇形D的圓心角的度數是:360×=27°;(3)能在1.5小時內完成家庭作業的人數是:2000×(25%+30%+35%)=1800(人).考點:條形統計圖、扇形統計圖.21、(1)證明見解析;(2)AG=;(3)證明見解析.【解析】
(1)根據正方形的性質得到AD∥BC,AB∥CD,AD=CD,根據相似三角形的性質列出比例式,等量代換即可;(2)根據勾股定理求出AE,根據相似三角形的性質計算即可;(3)延長GF交AM于H,根據平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結論.【詳解】解:(1)∵四邊形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延長GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO?ED=OD?EF.【點睛】本題主要考查平行線分線段成比例及正方形的性質,掌握平行線分線段中的線段對應成比例是解題的關鍵,注意利用比例相等也可以證明線段相等.22、(2)k≤;(2)-2.【解析】試題分析:(2)根據方程的系數結合根的判別式,即可得出△=﹣4k+5≥0,解之即可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/SHPTA 042-2023塑料無鹵阻燃抗沖擊聚苯乙烯(PS-I)專用料
- 教育科技企業的跨領域合作與市場擴張研究
- 2025貸款擔保合同樣本
- 實現數字時代下的全方位醫療信息安全防護措施
- 基于大數據的葡萄酒消費行為分析與應用
- 企業數字化轉型中的人為因素風險管理
- 2025花卉市場交易合同范本
- 2025法律法規重點關注:合同條款中的“約定”風險管理 guide
- 中藥種植銷售合同范本
- 個人技術配合合同范本
- 浙江省金華市東陽市2025年七年級下學期期末數學試題及答案
- 期末復習題(試題)2024-2025學年六年級下冊數學人教版
- 醫院檢驗科實驗室生物安全程序文件SOP
- 閥門系數Cv和KV值計算表格(帶公式)
- 完整版8D改善報告
- MSA測量系統分析軟件(第三版A級實例)
- 工業硅技術安全操作規程
- 消防工程項目樣板區、樣板間方案
- 導流明渠施工方案(共4頁)
- 小學美術三年級下冊第5課我們班級的標志PPT課件
- 兒童社會工作案例及分析PPT學習教案
評論
0/150
提交評論