




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數的導函數,且滿足,若在中,,則()A. B. C. D.2.函數的最大值為,最小正周期為,則有序數對為()A. B. C. D.3.如圖所示,網絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.84.執行如圖所示的程序框圖,若輸出的,則輸入的整數的最大值為()A.7 B.15 C.31 D.635.設為虛數單位,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.集合,,則=()A. B.C. D.7.的展開式中的系數是()A.160 B.240 C.280 D.3208.函數的最小正周期是,則其圖象向左平移個單位長度后得到的函數的一條對稱軸是()A. B. C. D.9.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現從農歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.10.網絡是一種先進的高頻傳輸技術,我國的技術發展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數據.如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據數據得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月11.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.12.已知實數,,函數在上單調遞增,則實數的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號為_____.14.如圖,某市一學校位于該市火車站北偏東方向,且,已知是經過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學校道路,其中,,以學校為圓心,半徑為的四分之一圓弧分別與相切于點.當地政府欲投資開發區域發展經濟,其中分別在公路上,且與圓弧相切,設,的面積為.(1)求關于的函數解析式;(2)當為何值時,面積為最小,政府投資最低?15.已知,,,且,則的最小值為___________.16.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總人數為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知向量,.(1)求的最小正周期;(2)若的內角的對邊分別為,且,求的面積.18.(12分)某商場以分期付款方式銷售某種商品,根據以往資料統計,顧客購買該商品選擇分期付款的期數的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(ⅰ)求的分布列;(ⅱ)若,求的數學期望的最大值.19.(12分)在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知:,:,:.(1)求與的極坐標方程(2)若與交于點A,與交于點B,,求的最大值.20.(12分)已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側),求四邊形面積的最大值.21.(12分)已知函數.(1)若函數,求的極值;(2)證明:.(參考數據:)22.(10分)已知函數,.(1)當時,討論函數的單調性;(2)若,當時,函數,求函數的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據的結構形式,設,求導,則,在上是增函數,再根據在中,,得到,,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數,在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.2.B【解析】函數(為輔助角)∴函數的最大值為,最小正周期為故選B3.A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.4.B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.5.A【解析】
利用復數的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數除法運算,考查復數對應點所在象限,屬于基礎題.6.C【解析】
先化簡集合A,B,結合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關鍵化簡集合A,B,難度較小.7.C【解析】
首先把看作為一個整體,進而利用二項展開式求得的系數,再求的展開式中的系數,二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數是.故選:C【點睛】本題考查二項展開式指定項的系數,掌握二項展開式的通項是解題的關鍵,屬于基礎題.8.D【解析】
由三角函數的周期可得,由函數圖像的變換可得,平移后得到函數解析式為,再求其對稱軸方程即可.【詳解】解:函數的最小正周期是,則函數,經過平移后得到函數解析式為,由,得,當時,.故選D.【點睛】本題考查了正弦函數圖像的性質及函數圖像的平移變換,屬基礎題.9.B【解析】
利用古典概型概率計算方法分析出符合題意的基本事件個數,結合組合數的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數的計算,考查學生分析問題的能力,難度較易.10.C【解析】
根據圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數以及線性回歸方程的實際應用,基礎題.11.D【解析】
根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.12.D【解析】
根據題意,對于函數分2段分析:當,由指數函數的性質分析可得①,當,由導數與函數單調性的關系可得,在上恒成立,變形可得②,再結合函數的單調性,分析可得③,聯立三個式子,分析可得答案.【詳解】解:根據題意,函數在上單調遞增,
當,若為增函數,則①,
當,若為增函數,必有在上恒成立,
變形可得:,
又由,可得在上單調遞減,則,
若在上恒成立,則有②,
若函數在上單調遞增,左邊一段函數的最大值不能大于右邊一段函數的最小值,則需有,③
聯立①②③可得:.
故選:D.【點睛】本題考查函數單調性的性質以及應用,注意分段函數單調性的性質.二、填空題:本題共4小題,每小題5分,共20分。13.④【解析】
根據直線和平面,平面和平面的位置關系依次判斷每個選項得到答案.【詳解】對于①,當m∥n時,由直線與平面平行的定義和判定定理,不能得出m∥α,①錯誤;對于②,當m?α,n?α,且m∥β,n∥β時,由兩平面平行的判定定理,不能得出α∥β,②錯誤;對于③,當α∥β,且m?α,n?β時,由兩平面平行的性質定理,不能得出m∥n,③錯誤;對于④,當α⊥β,且α∩β=m,n?α,m⊥n時,由兩平面垂直的性質定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號是④.故答案為:④.【點睛】本題考查了直線和平面,平面和平面的位置關系,意在考查學生的空間想象能力和推斷能力.14.(1);(2).【解析】
(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,,進而表示直線的方程,由直線與圓相切構建關系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數值域可求得t的取值范圍,進而對原面積的函數用含t的表達式換元,再令進行換元,并構建新的函數,由二次函數性質即可求得最小值.【詳解】解:(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調遞減.所以,當,即時,取得最大值,取最小值.答:當時,面積為最小,政府投資最低.【點睛】本題考查三角函數的實際應用,應優先結合實際建立合適的數學模型,再按模型求最值,屬于難題.15.【解析】
由,先將變形為,運用基本不等式可得最小值,再求的最小值,運用函數單調性即可得到所求值.【詳解】解:因為,,,且,所以因為,所以,當且僅當時,取等號,所以令,則,令,則,所以函數在上單調遞增,所以所以則所求最小值為故答案為:【點睛】此題考查基本不等式的運用:求最值,注意變形和滿足的條件:一正二定三相等,考查利用單調性求最值,考查化簡和運算能力,屬于中檔題.16.60【解析】
根據樣本容量及各組人數比,可求得C組中的人數;由組中甲、乙二人均被抽到的概率是可求得C組的總人數,即可由各組人數比求得總人數.【詳解】三組人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數分別.設組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點睛】本題考查了分層抽樣的定義與簡單應用,古典概型概率的簡單應用,由各層人數求總人數的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)或【解析】
(1)利用平面向量數量積的坐標運算可得,利用正弦函數的周期性即可求解;(2)由(1)可求,結合范圍,可求的值,由余弦定理可求的值,進而根據三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當時,由余弦定理得即,解得.此時.當時,由余弦定理得.即,解得.此時.【點睛】本題主要考查了平面向量數量積的坐標運算、正弦函數的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應用,考查了轉化思想和分類討論思想,屬于基礎題.18.(Ⅰ)0.288(Ⅱ)(ⅰ)見解析(ⅱ)數學期望的最大值為280【解析】
(Ⅰ)根據題意,設購買該商品的3位顧客中,選擇分2期付款的人數為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結果;(Ⅱ)(ⅰ)依題意,的取值為200,250,300,350,400,根據離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據的分布列,得出的數學期望,結合,即可算出的最大值.【詳解】解:(Ⅰ)設購買該商品的3位顧客中,選擇分2期付款的人數為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(ⅰ)依題意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數學期望的最大值為280.【點睛】本題考查獨立重復事件和二項分布的應用,以及離散型分布列和數學期望,考查計算能力.19.(1)的極坐標方程為;的極坐標方程為:(2)【解析】
(1)根據,代入即可轉化.(2)由:,可得,代入與的極坐標方程求出,從而可得,再利用二倍角公式、輔助角公式,借助三角函數的性質即可求解.【詳解】(1):,,的極坐標方程為:,,的極坐標方程為:,(2):,則(為銳角),,,,當時取等號.【點睛】本題考查了極坐標與直角坐標的互化、二倍角公式、輔助角公式以及三角函數的性質,屬于基礎題.20.(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)結合已知可得,求出a,b的值,即可得橢圓方程;(Ⅱ)由題意可知,直線的斜率存在,設出直線方程,聯立直線方程與橢圓方程,利用判別式等于0可得,聯立直線方程與圓的方程,結合根與系數的關系求得,利用弦長公式及點到直線的距離公式,求出,得到,整理后利用基本不等式求最值.【詳解】解:(Ⅰ)可得,結合,解得,,,得橢圓方程;(Ⅱ)易知直線的斜率k存在,設:,由,得,由,得,∵,設點O到直線:的距離為d,,,由,得,,,∴∴,∴而,,易知,∴,則,四邊形的面積當且僅當,即時取“”.∴四邊形面積的最大值為4.【點睛】本題考查了由求橢圓的標準方程,直線與橢圓的位置關系,考查了學生的計算能力,綜合性比較強,屬于難題.21.(1)見解析;(1)見證明【解析】
(1)求出函數的導數,解關于導函數的不等式,求出函數的單調區間,從而求出函數的極值即可;(1)問題轉化為證ex﹣x1﹣xlnx﹣1>0,根據xlnx≤x(x﹣1),問題轉化為只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根據函數的單調性證明即可.【詳解】(1),,當,,當,,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1<ex﹣x1.即證ex﹣x1﹣xlnx﹣1>0,先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,易知h(x)在(0,1)遞增,在(1,+∞)遞減,故h(x)≤h(1)=0,即lnx≤x﹣1,當且僅當x=1時取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)遞增,故x∈(0,1ln1]時,F′(x)≤0,F(x)遞減,即k′(x)遞減,x∈
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- qc小組考試試題及答案
- 2025年家庭裝修設計合同范本
- 節能環保型廠房使用權轉讓協議
- 2025集體土地流轉合同
- mri上崗證考試試題及答案2025
- 城市擴建拆遷補償與房屋租賃合同
- 測試質量保證的成功策略試題及答案
- 2025年運動品牌數字化營銷策略在體育賽事營銷中的應用報告
- 2025紡織品公司勞動合同
- 開展有效用戶測試的策略分析試題及答案
- 餐飲企業財務流程解析
- 擔保責任轉移協議書(2篇)
- 供電公司新聞宣傳工作培訓
- 大學美育知到智慧樹章節測試課后答案2024年秋德州學院
- DB37T-九小場所消防安全管理要求
- 企業食品安全知識培訓課件
- 【MOOC】中國近現代史綱要-浙江大學 中國大學慕課MOOC答案
- 【MOOC】獸醫外科手術學-華中農業大學 中國大學慕課MOOC答案
- 數控機床裝調維修工(技師)職業技能鑒定理論考試題庫(含答案)
- 金蝶云星空應用開發初級認證
- 2021年中等職業學校學生學業水平考試考務工作細則(考務手冊)
評論
0/150
提交評論