




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,一個半徑為r(r<1)的圓形紙片在邊長為6的正六邊形內任意運動,則在該六邊形內,這個圓形紙片不能接觸到的部分的面積是()A.πr2 B.C. D.2.如圖,矩形草坪ABCD中,AD=10m,AB=m.現需要修一條由兩個扇環構成的便道HEFG,扇環的圓心分別是B,D.若便道的寬為1m,則這條便道的面積大約是()(精確到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m23.“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數學的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設直角三角形較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則小正方形的邊長為A.9 B.6 C.4 D.34.若a是方程的一個解,則的值為A.3 B. C.9 D.5.隨機擲一枚質地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數,擲兩次骰子,擲得面朝上的點數之和是5的概率是()A. B. C. D.6.對于二次函數的圖象,下列說法正確的是()A.開口向下 B.對稱軸 C.頂點坐標是 D.與軸有兩個交點7.在公園內,牡丹按正方形種植,在它的周圍種植芍藥,如圖反映了牡丹的列數(n)和芍藥的數量規律,那么當n=11時,芍藥的數量為()A.84株B.88株C.92株D.121株8.已知拋物線經過和兩點,則n的值為()A.﹣2 B.﹣4 C.2 D.49.某果園2017年水果產量為100噸,2019年水果產量為144噸,則該果園水果產量的年平均增長率為()A.10% B.20% C.25% D.40%10.如圖,為的直徑,,為上的兩點.若,,則的度數是()A. B. C. D.11.如圖,點E、F是邊長為4的正方形ABCD邊AD、AB上的動點,且AF=DE,BE交CF于點P,在點E、F運動的過程中,PA的最小值為()A.2 B.2 C.4﹣2 D.2﹣212.已知正方形的邊長為4cm,則其對角線長是()A.8cm B.16cm C.32cm D.cm二、填空題(每題4分,共24分)13.將拋物線y=(x+2)25向右平移2個單位所得拋物線解析式為_____.14.如圖,點在雙曲線上,且軸于,若的面積為,則的值為__________.15.關于的方程=0的兩根分別是和,且=__________.16.某服裝店搞促銷活動,將一種原價為56元的襯衣第一次降價后,銷售量仍然不好,又進行第二次降價,兩次降價的百分率相同,現售價為31.5元,設降價的百分率為x,則列出方程是______________.17.菱形ABCD中,若周長是20cm,對角線AC=6cm,則對角線BD=_____cm.18.如圖,在矩形中,,以點為圓心,以的長為半徑畫弧交于,點恰好是中點,則圖中陰影部分的面積為___________.(結果保留)三、解答題(共78分)19.(8分)如圖,已知中,,.求的面積.20.(8分)如圖直角坐標系中,為坐標原點,拋物線交軸于點,過作軸,交拋物線于點,連結.點為拋物線上上方的一個點,連結,作垂足為,交于點.(1)求的長;(2)當時,求點的坐標;(3)當面積是四邊形面積的2倍時,求點的坐標.21.(8分)端午節是我國傳統佳節.小峰同學帶了4個粽子(除粽餡不同外,其它均相同),其中有兩個肉餡粽子、一個紅棗餡粽子和一個豆沙餡粽子,準備從中任意拿出兩個送給他的好朋友小悅.(1)用樹狀圖或列表的方法列出小悅拿到兩個粽子的所有可能結果;(2)請你計算小悅拿到的兩個粽子都是肉餡的概率.22.(10分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖,請根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統計圖;(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.23.(10分)如圖,已知正方形的邊長為,點是對角線上一點,連接,將線段繞點順時針旋轉至的位置,連接、.(1)求證:;(2)當點在什么位置時,的面積最大?并說明理由.24.(10分)學校想知道九年級學生對我國倡導的“一帶一路”的了解程度,隨機抽取部分九年級學生進行問卷調查,問卷設有4個選項(每位被調查的學生必選且只選一項):A.非常了解.B.了解.C.知道一點.D.完全不知道.將調查的結果繪制如下兩幅不完整的統計圖,請根據兩幅統計圖中的信息,解答下列問題:(1)求本次共調查了多少學生?(2)補全條形統計圖;(3)該校九年級共有600名學生,請你估計“了解”的學生約有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請用列表或畫樹狀圖法求出被選中的兩人恰好是一男生一女生的概率.25.(12分)如圖,在矩形ABCD中,E是AD上的一點,沿CE將△CDE對折,點D剛好落在AB邊的點F上.(1)求證:△AEF∽△BFC.(2)若AB=20cm,BC=16cm,求tan∠DCE.26.如圖,一塊直角三角板的直角頂點P放在正方形ABCD的BC邊上,并且使條直角邊經過點D,另一條直角邊與AB交于點Q.請寫出一對相似三角形,并加以證明.(圖中不添加字母和線段)
參考答案一、選擇題(每題4分,共48分)1、C【分析】當圓運動到正六邊形的角上時,圓與兩邊的切點分別為E,F,連接OE,OB,OF,根據六邊形的性質得出,所以,再由銳角三角函數的定義求出BF的長,最后利用可得出答案.【詳解】如圖,當圓運動到正六邊形的角上時,圓與兩邊的切點分別為E,F,連接OE,OB,OF,∵多邊形是正六邊形,∴,,∴圓形紙片不能接觸到的部分的面積是故選:C.【點睛】本題主要考查正六邊形和圓,掌握正六邊形的性質和特殊角的三角函數值是解題的關鍵.2、C【分析】由四邊形ABCD為矩形得到△ADB為直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環都是圓心角為30°且外環半徑為10.1,內環半徑為9.1.這樣可以求出每個扇環的面積.【詳解】∵四邊形ABCD為矩形,∴△ADB為直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環都是圓心角為30°,且外環半徑為10.1,內環半徑為9.1.∴每個扇環的面積為.∴當π取3.14時整條便道面積為×2=10.4666≈10.1m2.便道面積約為10.1m2.故選:C.【點睛】此題考查內容比較多,有勾股定理、三角函數、扇形面積,做題的關鍵是把實際問題轉化為數學問題.3、D【分析】已知ab=8可求出四個三角形的面積,用大正方形面積減去四個三角形的面積得到小正方形的面積,根據面積利用算術平方根求小正方形的邊長.【詳解】故選D.【點睛】本題考查勾股定理的推導,有較多變形題,解題的關鍵是找出圖形間面積關系,同時熟練運用勾股定理以及完全平方公式,本題屬于基礎題型.4、C【解析】由題意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故選C.5、B【分析】首先根據題意列出表格,然后由表格求得所有等可能的結果與擲得面朝上的點數之和是5的情況,再利用概率公式求解即可求得答案.【詳解】解:列表得:
123456123456723456783456789456789105678910116789101112∵共有36種等可能的結果,擲得面朝上的點數之和是5的有4種情況,
∴擲得面朝上的點數之和是5的概率是:.
故選:B.【點睛】此題考查的是用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.6、C【分析】根據拋物線的性質由a=2得到圖象開口向上,再根據頂點式得到頂點坐標,再根據對稱軸為直線x=1和開口方向和頂點,從而可判斷拋物線與x軸的公共點個數.【詳解】解:二次函數y=2(x-1)2+2的圖象開口向上,頂點坐標為(1,2),對稱軸為直線x=1,拋物線與x軸沒有公共點.
故選:C.【點睛】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x-h)2+k中,其頂點坐標為(h,k),對稱軸為x=h.當a>0時,拋物線開口向上,當a<0時,拋物線開口向下.7、B【解析】解:由圖可得,芍藥的數量為:4+(2n﹣1)×4,∴當n=11時,芍藥的數量為:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故選B.點睛:本題考查規律型:圖形的變化類,解答本題的關鍵是明確題意,發現題目中圖形的變化規律.8、B【分析】根據和可以確定函數的對稱軸,再由對稱軸的即可求解;【詳解】解:拋物線經過和兩點,可知函數的對稱軸,,;,將點代入函數解析式,可得;故選B.【點睛】本題考查二次函數圖象上點的坐標;熟練掌握二次函數圖象上點的對稱性是解題的關鍵.9、B【分析】2019年水果產量=2017年水果產量,列出方程即可.【詳解】解:根據題意得,解得(舍去)故答案為20%,選B.【點睛】本題考查了一元二次方程的應用.10、B【分析】先連接OC,根據三條邊都相等可證明△OCB是等邊三角形,再利用圓周角定理即可求出角度.【詳解】解:如圖,連接OC.∵AB=2,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°.故選:B.【點睛】本題考查圓周角定理,等邊三角形的判定及性質等知識,作半徑是圓中常用到的輔助線需熟練掌握.11、D【分析】根據直角三角形斜邊上的中線等于斜邊的一半,取BC的中點O,連接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根據三角形的三邊關系可知當O、P、A三點共線時,AP的長度最小.【詳解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如圖,取BC的中點O,連接OP、OA,則OP=BC=1,在Rt△AOB中,OA=,根據三角形的三邊關系,OP+AP≥OA,∴當O、P、A三點共線時,AP的長度最小,AP的最小值=OA﹣OP=﹣1.故選:D.【點睛】本題考查了正方形的性質,全等三角形的判定與性質,直角三角形斜邊上的中線等于斜邊的一半的性質,三角形的三邊關系.確定出AP最小值時點P的位置是解題關鍵,也是本題的難點.12、D【分析】作一個邊長為4cm的正方形,連接對角線,構成一個直角三角形如下圖所示:由勾股定理得AC2=AB2+BC2,求出AC的值即可.【詳解】解:如圖所示:四邊形ABCD是邊長為4cm的正方形,在Rt△ABC中,由勾股定理得:AC==4cm.所以對角線的長:AC=4cm.故選D.二、填空題(每題4分,共24分)13、y=x2?1【分析】根據平移規律“左加右減”解答.【詳解】按照“左加右減,上加下減”的規律可知:y=(x+2)2?1向右平移2個單位,得:y=(x+2?2)2?1,即y=x2?1.故答案是:y=x2?1.【點睛】考查了拋物線的平移以及拋物線解析式的變化規律:左加右減,上加下減.14、【分析】設點A坐標為(x,y),由反比例函數的幾何意義得,根據的面積為,即可求出k的值.【詳解】解:設點A的坐標為:(x,y),∴,∴,∴,∵反比例函數經過第二、四象限,則,∴故答案為:.【點睛】本題考查了反比例函數的性質,以及反比例函數的幾何意義,解題的關鍵是熟練掌握反比例函數的幾何意義進行解題.15、2【分析】根據一元二次方程根與系數的關系即可解答.【詳解】∵方程=0的兩根分別是和,∴,,∴=,故答案為:2.【點睛】此題考查根與系數的關系,熟記兩個關系式并運用解題是關鍵.16、=31.1【分析】根據題意,第一次降價后的售價為,第二次降價后的售價為,據此列方程得解.【詳解】根據題意,得:=31.1故答案為:=31.1.【點睛】本題考查一元二次方程的應用,關鍵是理解第二次降價是以第一次降價后的售價為單位“1”的.17、1【分析】先根據周長求出菱形的邊長,再根據菱形的對角線互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【詳解】解:如圖,∵菱形ABCD的周長是20cm,對角線AC=6cm,∴AB=20÷4=5cm,AO=AC=3cm,又∵AC⊥BD,∴BO==4cm,∴BD=2BO=1cm.故答案為:1.【點睛】本題考查了菱形的性質,屬于簡單題,熟悉菱形對角線互相垂直且平分是解題關鍵.18、【分析】連接EC,先根據題意得出,再得出,然后計算出和的面積即可求解.【詳解】連接EC,如下圖所示:由題意可得:∵是中點∴∴∴∴∴∴故填:.【點睛】本題主要考查扇形面積的計算、矩形的性質、解直角三角形,準確作出輔助線是關鍵.三、解答題(共78分)19、【分析】過點A作AD⊥BC,垂足為點D,構造直角三角形,利用三角函數值分別求出AD、BD、CD的值即可求三角形面積.【詳解】解:過點A作AD⊥BC,垂足為點D,在Rt△ADB中,∵,∴=∵,∴在Rt△ADC中,∵,∴,∴AD=DC=4∴【點睛】本題考查的知識點是利用勾股定理求三角形面積,通過作輔助線構造直角三角形結合三角函數值是解此題的關鍵.20、(1)6;(2);(3)或【分析】(1)令x=0求得A的坐標,再根據軸,令y=3即可求解;(2)證明,則,即可求解;(3)當的面積是四邊形的面積的2倍時,則,,即可求解.【詳解】解:(1)∵拋物線交軸于點,∴,∵軸,∴B的縱坐標為3,設B的橫坐標為a,則,解得,(舍),∴,∴;(2)設,,,,,解得.(3)當的面積是四邊形的面積的2倍時,則,得:,,或【點睛】本題考查的是二次函數綜合,涉及到一次函數、三角形相似、圖形的面積計算等,逐一分類討論.21、(1)樹狀圖見解析;(2)【解析】分析:(1)根據題意可以用樹狀圖表示出所有的可能結果;
(2)根據(1)中的樹狀圖可以得到小悅拿到的兩個粽子都是肉餡的概率.詳解:(1)肉粽記為A、紅棗粽子記為B、豆沙粽子記為C,由題意可得,
(2)由(1)可得,
小悅拿到的兩個粽子都是肉餡的概率是:,
即小悅拿到的兩個粽子都是肉餡的概率是.點睛:本題考查列表法與樹狀圖法,解答本題的關鍵是明確題意,列出相應的樹狀圖,求出相應的概率.22、(1)60,90;(2)見解析;(3)300人【解析】(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數,繼而求得扇形統計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數,繼而補全條形統計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∴扇形統計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統計圖得:(3)根據題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為300人.【點睛】本題考查了條形統計圖與扇形統計圖,解題的關鍵是熟練的掌握條形統計圖與扇形統計圖的相關知識點.23、(1)見解析;(2)在中點時,的面積最大,見解析【分析】(1)由題意推出,結合正方形的性質利用SAS證明;(2)設AE=x,表示出AF,根據∠EAF=90°,得出關于面積的二次函數,利用二次函數的最值求解.【詳解】解:(1)∵繞點順時針旋轉至的位置,∴,,∵在正方形中,∴,,∴,即,∴;(2)由(1)知,∴,,∴,設,∵正方形的邊長為,故,∴,∴,∴當即在中點時,的面積最大.【點睛】本題考查了全等三角形的判定、旋轉的性質和二次函數的性質,準確利用題中的條件進行判定和證明,將待求的量轉化為二次函數最值.24、(1)30;(2)作圖見解析;(3)240;(4).【解析】試題分析:(1)由D選項的人數及其百分比可得總人數;(2)總人數減去A、C、D選項的人數求得B的人數即可;(3)總人數乘以樣本中B選項的比例可得;(4)畫樹狀圖列出所有等可能結果,根據概率公式求解可得.試題解析:解:(1)本次調查的學生人數為6÷20%=30;(2)B選項的人數為30﹣3﹣9﹣6=12,補全圖形如下:(3)估計“了解”的學生約有600×=240名;(4)畫樹狀圖如下:由樹狀圖可知,共有6種等可能結果,其中兩人恰好是一男生一女生的有4種,∴被選中的兩人恰好是一男生一女生的概率為=.點睛:本題考查的是條形統計圖和扇形統計圖的綜合運用以及概率的求法,讀懂統計圖,從不同的統計圖中得到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司組織祈福活動方案
- 公司歡送會策劃方案
- 公司水療團建活動方案
- 公司聯誼旅游活動方案
- 公司福利回饋活動方案
- 公司端午尋寶活動方案
- 公司結對幫扶活動方案
- 公司禮盒自營活動方案
- 公司消夏晚會策劃方案
- 公司文藝宣傳活動方案
- 2025年 云南省危險化學品經營單位安全管理人員考試練習題附答案
- 高中化學新課標解讀-北師大王磊2024-3-20
- 2022年長沙市燃氣實業有限公司校園招聘筆試試題及答案解析
- 2023年包頭市工會系統招聘考試筆試題庫及答案解析
- 二級評茶技師知識考核試題題庫與答案
- 消防工程擬投入主要施工設備機具表
- T∕CFA 0203141-2021 綠色鑄造設計產品 球墨鑄鐵管水冷金屬型離心機通用技術要求
- 【2020-2021自招】江蘇蘇州實驗中學初升高自主招生數學模擬試卷【4套】【含解析】
- 監理報審表(第六版)-江蘇省建設工程監理現場用表
- 圓通快遞借殼上市案例分析(課堂PPT)
- 配電網工程典型設計10kV電纜分冊
評論
0/150
提交評論