




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,是的直徑,點、、在上.若,則的度數為()A. B. C. D.2.已知a、b、c、d是比例線段.a=2、b=3、d=1.那么c等于()A.9 B.4 C.1 D.123.拋物線經過點與,若,則的最小值為()A.2 B. C.4 D.4.拋擲一枚質地均勻的硬幣,若拋擲6次都是正面朝上,則拋擲第7次正面朝上的概率是()A.小于 B.等于 C.大于 D.無法確定5.如圖,矩形中,,交于點,,分別為,的中點.若,,則的度數為()A. B. C. D.6.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點,點P為AC邊上的一個動點,連接PD,PB,PE.設AP=x,圖1中某條線段長為y,若表示y與x的函數關系的圖象大致如圖2所示,則這條線段可能是()A.PD B.PB C.PE D.PC7.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.8.四邊形內接于⊙,點是的內心,,點在的延長線上,則的度數為()A.56° B.62° C.68° D.48°9.如圖,在邊長為1的小正方形組成的網格中,△ABC的三個頂點均在格點上,則tanA的值為()A. B. C. D.10.如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結論有()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.如圖,矩形對角線交于點為線段上一點,以點為圓心,為半徑畫圓與相切于的中點交于點,若,則圖中陰影部分面積為________________.12.反比例函數的圖像的兩支曲線分別位于第二、四象限內,則應滿足的條件是_________.13.掃地機器人能夠自主移動并作出反應,是因為它發射紅外信號反射回接收器,機器人在打掃房間時,若碰到障礙物則發起警報.若某一房間內A、B兩點之間有障礙物,現將A、B兩點放置于平面直角坐標系xOy中(如圖),已知點A,B的坐標分別為(0,4),(6,4),機器人沿拋物線y=ax2﹣4ax﹣5a運動.若機器人在運動過程中只觸發一次報警,則a的取值范圍是_____.14.已知圓錐的底面半徑為2cm,側面積為10πcm2,則該圓錐的母線長為_____cm.15.如圖,在平面直角坐標系xOy中,P是直線y=2上的一個動點,⊙P的半徑為1,直線OQ切⊙P于點Q,則線段OQ取最小值時,Q點的坐標為_____.16.的半徑為4,圓心到直線的距離為2,則直線與的位置關系是______.17.函數y=kx,y=,y=的圖象如圖所示,下列判斷正確的有_____.(填序號)①k,a,b都是正數;②函數y=與y=的圖象會出現四個交點;③A,D兩點關于原點對稱;④若B是OA的中點,則a=4b.18.已知,是方程的兩實數根,則__.三、解答題(共66分)19.(10分)如圖,在正方形ABCD中,E為邊AD的中點,點F在邊CD上,且∠BEF=90°,延長EF交BC的延長線于點G;(1)求證:△ABE∽△EGB;(2)若AB=4,求CG的長.20.(6分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,籃球1個,黃球若干個,現從中任意摸出一個球是紅球的概率為.(1)求口袋中黃球的個數;(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;(3)現規定:摸到紅球得5分,摸到黃球得3分(每次摸后放回),乙同學在一次摸球游戲中,第一次隨機摸到一個紅球第二次又隨機摸到一個藍球,若隨機,再摸一次,求乙同學三次摸球所得分數之和不低于10分的概率.21.(6分)已知拋物線y=x2+bx+c與x軸交于A(4,0)、B(﹣2,0),與y軸交于點C.(1)求拋物線的解析式;(2)點D為第四象限拋物線上一點,設點D的橫坐標為m,四邊形ABCD的面積為S,求S與m的函數關系式,并求S的最值;(3)點P在拋物線的對稱軸上,且∠BPC=45°,請直接寫出點P的坐標.22.(8分)已知點M(2,a)在反比例函數y=(k≠0)的圖象上,點M關于原點中心對稱的點N在一次函數y=﹣2x+8的圖象上,求此反比例函數的解析式.23.(8分)如圖,在平面直角坐標系中,點為坐標原點,每個小方格的邊長為個單位長度,在第二象限內有橫、縱坐標均為整數的兩點,點,點的橫坐標為,且.在平面直角坐標系中標出點,寫出點的坐標并連接;畫出關于點成中心對稱的圖形.24.(8分)若a≠0且a2﹣2a=0,求方程16x2﹣4ax+1=3﹣12x的根.25.(10分)在一個不透明的袋子里有1個紅球,1個黃球和個白球,它們除顏色外其余都相同,從這個袋子里摸出一個球,記錄其顏色,然后放回,搖均勻后,重復該試驗,經過大量試驗后,發現摸到白球的頻率穩定于0.5左右,求的值.26.(10分)已知:在△ABC中,點D、點E分別在邊AB、AC上,且DE//BC,BE平分∠ABC.(1)求證:BD=DE;(2)若AB=10,AD=4,求BC的長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】連接AD,BD,由圓周角定理可得∠ABD=25°,∠ADB=90°,從而可求得∠BAD=65°,再由圓的內接四邊形對角互補得到∠BCD=115°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=25°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-25°=65°,∴∠BCD=180°-65°=115°.故選C【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內接四邊形的性質是關鍵.2、B【分析】根據比例線段的定義得到a:b=c:d,即2:3=c:1,然后利用比例性質求解即可.【詳解】∵a、b、c、d是比例線段,∴a:b=c:d,即2:3=c:1,∴3c=12,解得:c=2.故選:B.【點睛】本題考查了比例線段:對于四條線段a、b、c、d,如果其中兩條線段的比(即它們的長度比)與另兩條線段的比相等,如a:b=c:d(即ad=bc),我們就說這四條線段是成比例線段,簡稱比例線段.3、D【分析】將點A、B的坐標代入解析式得到y1與y2,再根據,即可得到答案.【詳解】將點A、B的坐標分別代入,得,,∵,∴,得:b,∴b的最小值為-4,故選:D.【點睛】此題考查二次函數點與解析式的關系,解不等式求取值,正確理解題意是解題的關鍵.4、B【分析】利用概率的意義直接得出答案.【詳解】解:拋擲一枚質地均勻的硬幣,正面朝上概率等于,前6次的結果都是正面朝上,不影響下一次拋擲正面朝上概率,則第7次拋擲這枚硬幣,正面朝上的概率為:,故選:.【點睛】此題主要考查了概率的意義,正確把握概率的定義是解題關鍵.5、A【分析】根據矩形的性質和直角三角形的性質以及中位線的性質,即可得到答案.【詳解】∵,分別為,的中點,∴MN是?OBC的中位線,∴OB=2MN=2×3=6,∵四邊形是矩形,∴OB=OD=OA=OC=6,即:AC=12,∵AB=6,∴AC=2AB,∵∠ABC=90°,∴=30°.故選A.【點睛】本題主要考查矩形的性質和直角三角形的性質以及中位線的性質,掌握矩形的對角線互相平分且相等,是解題的關鍵.6、C【解析】觀察可得,點P在線段AC上由A到C的運動中,線段PE逐漸變短,當EP⊥AC時,PE最短,過垂直這個點后,PE又逐漸變長,當AP=m時,點P停止運動,符合圖像的只有線段PE,故選C.點睛:本題考查了動點問題的函數圖象,對于此類問題來說是典型的數形結合,圖象應用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.7、B【分析】根據軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.是軸對稱圖形,也是中心對稱圖形,故本選項符合題意;C.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.8、C【分析】由點I是的內心知,,從而求得,再利用圓內接四邊形的外角等于內對角可得答案.【詳解】∵點I是的內心∴,∵∴∵四邊形內接于⊙∴故答案為:C.【點睛】本題考查了三角形的內心,圓內接四邊形的性質,掌握三角形內心的性質和圓內接四邊形的外角等于內對角是解題的關鍵.9、D【分析】由三角函數定義即可得出答案.【詳解】如圖所示:由圖可得:AD=3,CD=4,∴tanA.故選:D.【點睛】本題考查了解直角三角形.構造直角三角形是解答本題的關鍵.10、C【詳解】根據圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當x=1時,y<0,即a+b+c<0,則②錯誤;根據對稱軸可得:-=-,則b=3a,根據a<0,b<0可得:a>b;則③正確;根據函數與x軸有兩個交點可得:-4ac>0,則④正確.故選C.【點睛】本題考查二次函數的性質.能通過圖象分析a,b,c的正負,以及通過一些特殊點的位置得出a,b,c之間的關系是解題關鍵.二、填空題(每小題3分,共24分)11、【分析】連接BG,根據切線性質及G為中點可知BG垂直平分AO,再結合矩形性質可證明為等邊三角形,從而得到∠ABD=60°,∠ADB=30°,再利用30°角直角三角形的三邊關系求出AB,然后求出和扇形BEF的面積,兩者相減即可得到陰影部分面積.【詳解】連接BG,由題可知BG⊥OA,∵G為OA中點,∴BG垂直平分OA,∴AB=OB,∵四邊形ABCD為矩形,∴OA=OB=OD=OC,∠BAD=90°,∴AB=OB=OA,即為等邊三角形,∴∠ABO=∠BAO=60°,∴∠ADB=30°,∠ABG=30°,在中,∠ADB=30°,AD=,∴AB=OA=2,在中,∠ABG=30°,AB=2,∴AG=1,BG=,∴,又∵,∴.故答案為:.【點睛】本題考查了扇形面積的計算,矩形的性質,含30°角的直角三角形的三邊關系以及等邊三角形的判定與性質,較為綜合,需熟練掌握各知識點.12、【分析】根據反比例函數圖象所在的象限求得,然后得到的取值范圍即可.【詳解】∵反比例函數的圖象位于第二、四象限內,
∴,
則.故答案是:.【點睛】本題考查了反比例函數的圖象的性質,重點是比例系數k的符號.13、﹣<a<【分析】根據題意可以知道拋物線與線段AB有一個交點,根據拋物線對稱軸及其與y軸的交點即可求解.【詳解】解:由題意可知:∵點A、B坐標分別為(0,1),(6,1),∴線段AB的解析式為y=1.機器人沿拋物線y=ax2﹣1ax﹣5a運動.拋物線對稱軸方程為:x=2,機器人在運動過程中只觸發一次報警,所以拋物線與線段y=1只有一個交點.所以拋物線經過點A下方.∴﹣5a<1解得a>﹣.1=ax2﹣1ax﹣5a,△=0即36a2+16a=0,解得a1=0(不符合題意,舍去),a2=.當拋物線恰好經過點B時,即當x=6,y=1時,36a﹣21a﹣5a=1,解得a=綜上:a的取值范圍是﹣<a<【點睛】本題考查二次函數的應用,關鍵在于熟悉二次函數的性質,結合圖形靈活運用.14、5【解析】根據圓的周長公式求出圓錐的底面周長,根據圓錐的側面積的計算公式計算即可.【詳解】設圓錐的母線長為Rcm,圓錐的底面周長=2π×2=4π,則×4π×R=10π,解得,R=5(cm)故答案為5【點睛】本題考查的是圓錐的計算,理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.15、(,).【分析】連接PQ、OP,如圖,根據切線的性質得PQ⊥OQ,再利用勾股定理得到OQ=,利用垂線段最短,當OP最小時,OQ最小,然后求出OP的最小值,得到OQ的最小值,于是得到結論.【詳解】連接PQ、OP,如圖,∵直線OQ切⊙P于點Q,∴PQ⊥OQ,在Rt△OPQ中,OQ==,當OP最小時,OQ最小,當OP⊥直線y=2時,OP有最小值2,∴OQ的最小值為=.設點Q的橫坐標為a,∴S△OPQ=×=×2×|a,∴a=,∴Q點的縱坐標==,∴Q點的坐標為(,),故答案為(,).【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了勾股定理.16、相交【分析】由圓的半徑為4,圓心O到直線l的距離為2,利用直線和圓的位置關系,圓的半徑大于直線到圓距離,則直線l與O的位置關系是相交.【詳解】解:∵⊙O的半徑為4,圓心O到直線L的距離為2,
∵4>2,即:d<r,
∴直線L與⊙O的位置關系是相交.
故答案為:相交.【點睛】本題考查知道知識點是圓與直線的位置關系,若d<r,則直線與圓相交;若d>r,則直線與圓相離;若d=r,則直線與圓相切.17、①③④【分析】根據反比例函數、一次函數的性質以及反比例函數系數k的幾何意義即可判斷.【詳解】解:由圖像可知函數y=kx經過一、三象限,h函數y=,y=在一、三象限,則k>0,a>0,b>0,故①正確;由圖像可知函數y=與y=的圖像沒有交點,故②錯誤;根據正比例函數和反比例函數的圖像都是中心對稱圖像可知,A,D兩點關于原點對稱,故③正確;若B是OA的中點,軸OA=2OB,作AM⊥x軸于M,BN⊥x軸于N,∴BN∥AM,∴△BON∽△AOM,∴,∴,∴b=4a,故④正確:故答案為①③④.【點睛】本題考查了相似性質、反比例函數、一次函數的性質以及反比例函數系數k的幾何意義,數形結合的思想是解題的關鍵18、1【分析】先根據一元二次方程根的定義得到,則可變形為,再根據根與系數的關系得到,,然后利用整體代入的方法計算代數式的值.【詳解】是方程的實數根,,,,,是方程的兩實數根,,,.故答案為1.【點睛】考查了根與系數的關系:若,是一元二次方程的兩根時,,.三、解答題(共66分)19、(1)證明見解析;(2)CG=6.【分析】(1)由正方形的性質與已知得出∠A=∠BEG,證出∠ABE=∠G,即可得出結論;(2)由AB=AD=4,E為AD的中點,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出結果.【詳解】(1)證明:∵四邊形ABCD為正方形,且∠BEG=90°,∴∠A=∠BEG,∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,∴∠ABE=∠G,∴△ABE∽△EGB;(2)∵AB=AD=4,E為AD的中點,∴AE=DE=2,在Rt△ABE中,BE=,由(1)知,△ABE∽△EGB,∴,即:,∴BG=10,∴CG=BG﹣BC=10﹣4=6.【點睛】本題主要考查了四邊形與相似三角形的綜合運用,熟練掌握二者相關概念是解題關鍵20、(1)黃球有1個;(2);(3).【分析】(1)首先設口袋中黃球的個數為x個,根據題意得:,解此方程即可求得答案.(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案.(3)由若隨機,再摸一次,求乙同學三次摸球所得分數之和不低于10分的有3種情況,且共有4種等可能的結果;直接利用概率公式求解即可求得答案.【詳解】解:(1)設口袋中黃球的個數為x個,根據題意得:,解得:x=1.經檢驗:x=1是原分式方程的解.∴口袋中黃球的個數為1個.(2)畫樹狀圖得:∵共有12種等可能的結果,兩次摸出都是紅球的有2種情況,∴兩次摸出都是紅球的概率為:.(3)∵摸到紅球得5分,摸到黃球得3分,而乙同學在一次摸球游戲中,第一次隨機摸到一個紅球第二次又隨機摸到一個藍球,∴乙同學已經得了7分.∴若隨機,再摸一次,求乙同學三次摸球所得分數之和不低于10分的有3種情況,且共有4種等可能的結果;∴若隨機,再摸一次,求乙同學三次摸球所得分數之和不低于10分的概率為:.21、(1)y=x2﹣x﹣4;(2)S=﹣(m﹣2)2+16,S的最大值為16;(3)點P的坐標為:(1,﹣1+)或(1,﹣1﹣).【分析】(1)根據交點式可求出拋物線的解析式;
(2)由S=S△OBC+S△OCD+S△ODA,即可求解;
(3)∠BPC=45°,則BC對應的圓心角為90°,可作△BCP的外接圓R,則∠BRC=90°,過點R作y軸的平行線交過點C與x軸的平行線于點N、交x軸于點M,證明△BMR≌△RNC(AAS)可求出點R(1,-1),即點R在函數對稱軸上,即可求解.【詳解】解:(1)∵拋物線y=x2+bx+c與x軸交于A(4,0)、B(﹣2,0),∴拋物線的表達式為:y=(x﹣4)(x+2)=x2﹣x﹣4;(2)設點D(m,m2﹣m﹣4),可求點C坐標為(0,-4),∴S=S△OBC+S△OCD+S△ODA==﹣(m﹣2)2+16,當m=2時,S有最大值為16;(3)∠BPC=45°,則BC對應的圓心角為90°,如圖作圓R,則∠BRC=90°,圓R交函數對稱軸為點P,過點R作y軸的平行線交過點C與x軸的平行線于點N、交x軸于點M,設點R(m,n).∵∠BMR+∠MRB=90°,∠MRB+∠CRN=90°,∴∠CRN=∠MBR,∠BMR=∠RNC=90°,BR=RC,∴△BMR≌△RNC(AAS),∴CN=RM,RN=BM,即m+2=n+4,﹣n=m,解得:m=1,n=﹣1,即點R(1,﹣1),即點R在函數對稱軸上,圓的半徑為:=,則點P的坐標為:(1,﹣1+)或(1,﹣1﹣).【點睛】本題考查的是二次函數與幾何綜合運用,涉及圓周角定理、二次函數解析式的求法、圖形的面積計算等,其中(3),要注意分類求解,避免遺漏,能靈活運用數形結合的思想是解題的關鍵,(3)的難點是作出輔助圓.22、y=﹣【分析】由點M與點N關于原點中心對稱,可表示出點N的坐標,代入一次函數的關系式,可求得a的值,確定點M的坐標,再代入反比例函數的關系式求出k的值即可.【詳解】∵點M(2,a),點M與點N關于原點中心對稱,∴N(﹣2,﹣a)代入y=﹣2x+8得:﹣a=4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車制造業2025年供應鏈風險管理數字化解決方案報告
- 2025屆廣東省梅州市梅江實驗中學英語八年級第二學期期末質量檢測模擬試題含答案
- 2025年元宇宙社交平臺虛擬現實社交平臺運營模式研究報告
- 城市污水處理廠智能化升級改造中的智能化水質處理技術研究報告
- 2025年醫院電子病歷系統在醫院信息化建設中的邊緣計算應用報告
- 2025年醫藥行業未來趨勢:仿制藥一致性評價下的醫藥電商發展報告
- 2025年醫藥企業研發外包(CRO)與企業核心競爭力提升報告
- 能源行業2025年儲能技術多元化儲能電池材料研發與創新報告
- 禮儀培訓課件標題
- 安全轉運試題及答案
- 2025年中學教師資格考試《綜合素質》教育法律法規經典案例分析及強化試題集(含答案)
- 2025年小學語文期末考試試題及答案
- 發改委立項用-超薄玻璃項目可行性研究報告
- 《等腰三角形的性質》課件
- 工業互聯網與船舶行業融合應用參考指南 2025
- 2024年浙江省《輔警招聘考試必刷500題》考試題庫附答案【綜合題】
- 2025年北京市第一次普通高中學業水平合格性考試歷史試題(含答案)
- 蘇教版-數學二年級下冊-期末試卷10套
- 《陸上風電場工程設計概算編制規定及費用標準》(NB-T 31011-2019)
- ××團支部換屆選舉選票
- 復雜超限結構設計要點
評論
0/150
提交評論