福建省南平三中學2025屆九上數學期末學業質量監測試題含解析_第1頁
福建省南平三中學2025屆九上數學期末學業質量監測試題含解析_第2頁
福建省南平三中學2025屆九上數學期末學業質量監測試題含解析_第3頁
福建省南平三中學2025屆九上數學期末學業質量監測試題含解析_第4頁
福建省南平三中學2025屆九上數學期末學業質量監測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省南平三中學2025屆九上數學期末學業質量監測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖擺放的圓錐、圓柱、三棱柱、球,其主視圖是三角形的是()A. B. C. D.2.下列手機手勢解鎖圖案中,是中心對稱圖形的是(

)A. B. C. D.3.如圖,在平行四邊形ABCD中,點E在DC邊上,連接AE,交BD于點F,若DE:EC=2:1,則△DEF的面積與△BAF的面積之比為()A.1:4 B.4:9 C.9:4 D.2:34.(2011?陜西)下面四個幾何體中,同一個幾何體的主視圖和俯視圖相同的共有()A、1個 B、2個C、3個 D、4個5.中國人很早開始使用負數,中國古代數學著作《九章算術》的“方程”一章,在世界數學史上首次正式引入負數.如果收入100元記作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元6.如圖,四邊形ABCD內接于⊙O,已知∠A=80°,則∠C的度數是()A.40° B.80° C.100° D.120°7.已知,下列說法中,不正確的是()A. B.與方向相同C. D.8.四邊形內接于⊙,點是的內心,,點在的延長線上,則的度數為()A.56° B.62° C.68° D.48°9.在中,,,,則的值為()A. B. C. D.10.如圖,的頂點均在上,若,則的度數為()A. B. C. D.11.觀察下列四個圖形,中心對稱圖形是()A. B. C. D.12.如圖,的頂點在第一象限,頂點在軸上,反比例函數的圖象經過點,若,的面積為,則的值為()A. B. C. D.二、填空題(每題4分,共24分)13.函數和在第一象限內的圖象如圖,點是的圖象上一動點,軸于點,交的圖象于點;軸于點,交的圖象于點,則四邊形的面積為______.14.如圖,在寬為20m,長為32m的矩形地面上修筑同樣寬的道路(圖中陰影部分),余下的部分種上草坪.要使草坪的面積為540m2,則道路的寬為.15.把一個小球以20米/秒的速度豎直向上彈出,它在空中的高度h(米)與時間t(秒),滿足關系:h=20t-5t2,當小球達到最高點時,小球的運動時間為第_________秒時.16.拋物線在對稱軸左側的部分是上升的,那么的取值范圍是____________.17.在Rt△ABC中,,,,則的值等于__.18.因式分解:______.三、解答題(共78分)19.(8分)如圖,點是的內心,的延長線交于點,交的外接圓于點,連接,過點作直線,使;(1)求證:直線是的切線;(2)若,,求.20.(8分)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分別以AB、AC為對稱軸翻折變換,D點的對稱點為E、F,延長EB、FC相交于G點.(1)求證:四邊形AEGF是正方形;(2)求AD的長.21.(8分)為了了解全校1500名學生對學校設置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項體育活動的喜愛情況,在全校范圍內隨機抽查部分學生,對他們喜愛的體育項目(每人只選一項)進行了問卷調查,將統計數據繪制成如圖兩幅不完整統計圖,請根據圖中提供的信息解答下列各題.(1)m=%,這次共抽取了名學生進行調查;并補全條形圖;(2)請你估計該校約有名學生喜愛打籃球;(3)現學校準備從喜歡跳繩活動的4人(三男一女)中隨機選取2人進行體能測試,請利用列表或畫樹狀圖的方法,求抽到一男一女學生的概率是多少?22.(10分)如圖1,拋物線的頂點為點,與軸的負半軸交于點,直線交拋物線W于另一點,點的坐標為.(1)求直線的解析式;(2)過點作軸,交軸于點,若平分,求拋物線W的解析式;(3)若,將拋物線W向下平移個單位得到拋物線,如圖2,記拋物線的頂點為,與軸負半軸的交點為,與射線的交點為.問:在平移的過程中,是否恒為定值?若是,請求出的值;若不是,請說明理由.23.(10分)用適當的方法解下列一元二次方程:(1)2x2+4x-1=0;(2)(y+2)2-(3y-1)2=0.24.(10分)如圖,已知EC∥AB,∠EDA=∠ABF.(1)求證:四邊形ABCD是平行四邊形;(2)求證:=OE?OF.25.(12分)已知=,求的值.26.如圖,已知一次函數y=kx+b的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數y=交于點C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點B為OF的中點,四邊形OECF的面積為16,點D的坐標為(4,﹣b).(1)求一次函數表達式和反比例函數表達式;(2)求出點C坐標,并根據圖象直接寫出不等式kx+b≤的解集.

參考答案一、選擇題(每題4分,共48分)1、D【解析】根據主視圖是從物體正面看所得到的圖形判斷即可.【詳解】A.主視圖是圓;B.主視圖是矩形;C.主視圖是矩形;D.主視圖是三角形.故選:D.【點睛】本題主要考查了幾何體的三種視圖,掌握定義是關鍵.注意所有的看到的棱都應表現在三視圖中.2、B【分析】根據中心對稱圖形的概念判斷即可.【詳解】A.不是中心對稱圖形;B.是中心對稱圖形;C.不是中心對稱圖形;D.不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、B【分析】先判斷△DEF∽△BAF,根據相似三角形的面積比等于相似比的平方計算即可.【詳解】解:∵四邊形ABCD是平行四邊形,∴DC∥AB,DC=AB,∴△DEF∽△BAF,∴.又∵DE:EC=2:1,∴,∴.故選B.【點睛】本題考查平行四邊形的性質、相似三角形的判定和性質,熟練掌握相似三角形的判定和性質是解題的關鍵.4、B【解析】圓柱主視圖、俯視圖分別是長方形、圓,主視圖與俯視圖不相同;圓錐主視圖、俯視圖分別是三角形、有圓心的圓,主視圖與俯視圖不相同;球主視圖、俯視圖都是圓,主視圖與俯視圖相同;正方體主視圖、俯視圖都是正方形,主視圖與俯視圖相同.共2個同一個幾何體的主視圖與俯視圖相同.故選B.5、C【解析】試題分析:“+”表示收入,“—”表示支出,則—80元表示支出80元.考點:相反意義的量6、C【分析】根據圓內接四邊形的性質得出∠C+∠A=180°,代入求出即可.【詳解】解:∵四邊形ABCD內接于⊙O,

∴∠C+∠A=180°,

∵∠A=80°,

∴∠C=100°,

故選:C.【點睛】本題考查了圓內接四邊形的性質的應用.熟記圓內接四邊形對角互補是解決此題的關鍵.7、A【分析】根據平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.8、C【分析】由點I是的內心知,,從而求得,再利用圓內接四邊形的外角等于內對角可得答案.【詳解】∵點I是的內心∴,∵∴∵四邊形內接于⊙∴故答案為:C.【點睛】本題考查了三角形的內心,圓內接四邊形的性質,掌握三角形內心的性質和圓內接四邊形的外角等于內對角是解題的關鍵.9、A【分析】根據勾股定理求出AB,根據余弦的定義計算即可.【詳解】由勾股定理得,,則,

故選:A.【點睛】本題考查的是銳角三角函數的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關鍵.10、D【分析】根據同弧所對圓心角等于圓周角的兩倍,可得到∠BOC=2∠BAC,再結合已知即可得到此題的答案.【詳解】∵∠BAC和∠BOC分別是所對的圓周角和圓心角,∴∠BOC=2∠BAC.∵∠BAC=35°,∴∠BOC=70°.故選D.【點睛】本題考查了圓周角定理,熟練掌握定理是解題的關鍵.11、C【分析】根據中心對稱圖形的定義即可判斷.【詳解】在平面內,若一個圖形可以繞某個點旋轉180°后能與自身重合,那么這個圖形叫做中心對稱圖形,根據定義可知,C選項中的圖形是中心對稱圖形.故答案選:C.【點睛】本題考查的知識點是中心對稱圖形,解題的關鍵是熟練的掌握中心對稱圖形.12、B【分析】先求得的面積再得到,根據反比例函數系數的幾何意義即可求得的值.【詳解】過點作軸,交軸于點,,,的面積是,,,,,故選:B.【點睛】本題主要考查反比例函數系數的幾何意義,反比例函數中的幾何意義,這里體現了數形結合的思想,做此類題一定要正確理解的幾何意義.二、填空題(每題4分,共24分)13、3【解析】根據反比例函數系數k的幾何意義可分別求得△OBD、△OAC、矩形PDOC的面積,據此可求出四邊形PAOB的面積.【詳解】解:如圖,

∵A、B是反比函數上的點,

∴S△OBD=S△OAC=,∵P是反比例函數上的點,

∴S矩形PDOC=4,

∴S四邊形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【點睛】本題考查的是反比例函數綜合題,熟知反比例函數中系數k的幾何意義是解答此題的關鍵.14、2m【解析】試題分析:本題考查了一元二次方程的應用,這類題目體現了數形結合的思想,如圖,需利用平移把不規則的圖形變為規則圖形,進而即可列出方程,求出答案.還要注意根據題意考慮根的合理性,從而確定根的取舍.本題可設道路寬為x米,利用平移把不規則的圖形變為規則圖形,如此一來,所有草坪面積之和就變為了(32-x)(20-x)米2,進而即可列出方程,求出答案.試題解析:解:設道路寬為x米(32-x)(20-x)=540解得:x1=2,x2=50(不合題意,舍去)∴x=2答:設道路寬為2米考點:1、一元二次方程的應用;2、數形結合的思想.15、1【解析】h=10t-5t1=-5(t-1)1+10,∵-5<0,∴函數有最大值,則當t=1時,球的高度最高.故答案為1.16、【分析】利用二次函數的性質得到拋物線開口向下,則a-1<0,然后解不等式即可.【詳解】∵拋物線y=(a-1)x1在對稱軸左側的部分是上升的,

∴拋物線開口向下,

∴a-1<0,解得a<1.

故答案為a<1.【點睛】此題考查二次函數圖象與系數的關系,解題關鍵在于掌握二次項系數a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.17、【分析】首先由勾股定理求出另一直角邊AC的長度,再利用銳角三角函數的定義求解.【詳解】∵在Rt△ABC中,∠C=90°,AB=10,BC=8,

∴,

∴,故答案為:.【點睛】本題主要考查了銳角三角函數的定義:在直角三角形中,銳角的余弦為鄰邊比斜邊.18、【分析】先提取公因式,然后用平方差公式因式分解即可.【詳解】解:故答案為:.【點睛】此題考查的是因式分解,掌握提取公因式法和公式法的結合是解決此題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2).【分析】(1)首先根據三角形內心的性質得出,然后利用等弧對等角進行等量轉換,得出,最后利用垂徑定理即可得證;(2)利用相似三角形的判定以及性質即可得解.【詳解】(1)證明:如圖所示,連接,∵點是的內心,∴,∴,∴,又∵,,∴,∴,∴,又∵為半徑,∴直線是的切線;(2)∵,∴,又∵(公共角),∴,∴,即,∵,∴∴∴.【點睛】此題主要考查圓的切線的證明以及相似三角形的判定與性質,熟練掌握,即可解題.20、(1)見解析;(2)AD=1;【分析】(1)先根據△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根據對稱的性質得到AE=AF,從而說明四邊形AEGF是正方形;(2)利用勾股定理,建立關于x的方程模型(x﹣2)2+(x﹣3)2=52,求出AD=x=1.【詳解】(1)證明:由翻折的性質可得,△ABD≌△ABE,△ACD≌△ACF,∴∠DAB=∠EAB,∠DAC=∠FAC,∵∠BAC=45°,∴∠EAF=90°,∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°,∴四邊形AEGF為矩形,∵AE=AD,AF=AD,∴AE=AF,∴矩形AEGF是正方形;(2)解:根據對稱的性質可得:BE=BD=2,CF=CD=3,設AD=x,則正方形AEGF的邊長是x,則BG=EG﹣BE=x﹣2,CG=FG﹣CF=x﹣3,在Rt△BCG中,根據勾股定理可得:(x﹣2)2+(x﹣3)2=52,解得:x=1或x=﹣1(舍去).∴AD=x=1;【點睛】本題考查了翻折對稱的性質,全等三角形和勾股定理,以及正方形的判定,解本題的關鍵是熟練掌握翻折變換的性質:翻折前后圖形的對應邊或對應角相等;有四個角是直角的四邊形是矩形,有一組鄰邊相等的矩形是正方形.21、(1)20;50;(2)360;(3).【解析】試題分析:(1)首先由條形圖與扇形圖可求得m=100%-14%-8%-24%-34%=20%;由跳繩的人數有4人,占的百分比為8%,可得總人數4÷8%=50;(2)由1500×24%=360,即可求得該校約有360名學生喜愛打籃球;(3)首先根據題意畫出表格,然后由表格即可求得所有等可能的結果與抽到一男一女學生的情況,再利用概率公式即可求得答案.試題解析:(1)m=100%-14%-8%-24%-34%=20%;∵跳繩的人數有4人,占的百分比為8%,∴4÷8%=50;如圖所示;50×20%=10(人).(2)1500×24%=360;(3)列表如下:

男1

男2

男3

男1

男2,男1

男3,男1

女,男1

男2

男1,男2

男3,男2

女,男2

男3

男1,男3

男2,男3

女,男3

男1,女

男2,女

男3,女

∵所有可能出現的結果共12種情況,并且每種情況出現的可能性相等.其中一男一女的情況有6種.∴抽到一男一女的概率P=.考點:1.列表法與樹狀圖法;2.扇形統計圖;3.條形統計圖.22、(1);(2);(3)恒為定值.【分析】(1)由拋物線解析式可得頂點A坐標為(0,-2),利用待定系數法即可得直線AB解析式;(2)如圖,過點作于,根據角平分線的性質可得BE=BN,由∠BND=∠CED=90°,∠BND=∠CDE可證明,設BE=x,BD=y,根據相似三角形的性質可得CE=2x,CD=2y,根據勾股定理由得y與x的關系式,即可用含x的代數式表示出C、D坐標,代入y=ax2-2可得關于x、a的方程組,解方程組求出a值即可得答案;(3)過點作于點,根據平移規律可得拋物線W1的解析式為y=x2-2-m,設點的坐標為(t,0)(t<0),代入y=x2-2-m可得2+m=t2,即可的W1的解析式為y=x2-t2,聯立直線BC解析式可用含t的代數式表示出點C1的坐標,即可得,可得∠,根據拋物線W的解析式可得點D坐標,聯立直線BC與拋物線W的解析式可得點C、A坐標,即可求出CG、DG的長,可得CG=DG,∠CDG=∠,即可證明,可得,,由∠CDG=45°可得BF=DF,根據等腰三角形的性質可求出DF的長,利用勾股定理可求出CD的長,即可求出CF的長,根據三角函數的定義即可得答案.【詳解】(1)∵拋物線W:的頂點為點,∴點,設直線解析式為,∵B(1,0),∴,解得:,∴拋物線解析式為:.(2)如圖,過點作于,∵平分,,∴,∵,∴,∴,∴,∵,∴,設,則,∵,∴,∴,∴,∴點,點,∴點,點是拋物線W:上的點,∴,∵x>0,∴,解得:(舍去),,∴,∴,∴拋物線解析式為:.(3)恒為定值,理由如下:如圖,過點作軸于H,過點作軸G,過點作于點,∵a=,∴拋物線W的解析式為y=x2-2,∵將拋物線W向下平移m個單位,得到拋物線,∴拋物線的解析式為:,設點的坐標為,∴,∴,∴拋物線的解析式為:,∵拋物線與射線的交點為,∴,解得:,(不合題意舍去),∴點的坐標,∴,∴,∴,且軸,,∵與軸交于點,∴點,∵與交于點,點,∴,解得:或,∴點,A(0,-2),∴,∴,且軸,∴,∴,∴,∴,∵,∴,∴,∴,∵點,點,∴,∴,∴,∴恒為定值.【點睛】本題考查了待定系數法求一次函數解析式、二次函數的圖象的平移、相似三角形的判定與性質及三角函數的定義,難度較大,屬中考壓軸題,熟練掌握相關的性質及判定定理是解題關鍵.23、(1)x1=-1+,x2=-1-;(2)y1=-,y2=.【解析】試題分析:(1)根據方程的特點,利用公式法解一元二次方程即可;(2)根據因式分解法,利用平方差公式因式分解,然后再根據乘積為0的方程的解法求解即可.試題解析:(1)∵a=2,b=4,c=-1∴△=b2-4ac=16+8=24>0∴x==∴x1=-1+,x2=-1-(2)(y+2)2-(3y-1)2=0[(y+2)+(3y-1)][(y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y1=-,y2=.24、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)由EC∥AB,∠EDA=∠ABF,可證得∠DAB=∠ABF,即可證得AD∥BC,則得四邊形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論