2023屆上海市第八中學九年級數學第一學期期末質量檢測試題含解析_第1頁
2023屆上海市第八中學九年級數學第一學期期末質量檢測試題含解析_第2頁
2023屆上海市第八中學九年級數學第一學期期末質量檢測試題含解析_第3頁
2023屆上海市第八中學九年級數學第一學期期末質量檢測試題含解析_第4頁
2023屆上海市第八中學九年級數學第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.一個不透明的袋子里裝著質地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.2.在同一直角坐標系中,函數y=和y=kx﹣3的圖象大致是()A. B. C. D.3.若二次函數y=-x2+px+q的圖像經過A(,n)、B(0,y1)、C(,n)、D(,y2)、E(,y3),則y1、y2、y3的大小關系是()A.y3<y2<y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y14.如圖,在直角坐標系中,⊙A的半徑為2,圓心坐標為(4,0),y軸上有點B(0,3),點C是⊙A上的動點,點P是BC的中點,則OP的范圍是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤45.已知二次函數y=ax1+bx+c+1的圖象如圖所示,頂點為(﹣1,0),下列結論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點B(﹣,y1)、C(﹣,y1)為函數圖象上的兩點,則y1>y1.其中正確的個數是()A.1 B.3 C.4 D.56.如圖,正方形的邊長是3,,連接、交于點,并分別與邊、交于點、,連接,下列結論:①;②;③;④當時,.正確結論的個數為()A.1個 B.2個 C.3個 D.4個7.如圖,在中,.將繞點按順時針方向旋轉度后得到,此時點在邊上,斜邊交邊于點,則的大小和圖中陰影部分的面積分別為()A. B.C. D.8.把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖所示,已知,則球的半徑長是()A.2 B.2.5 C.3 D.49.已知圓錐的底面半徑為5,母線長為13,則這個圓錐的全面積是()A. B. C. D.10.已知一個單位向量,設、是非零向量,那么下列等式中正確的是().A.; B.; C.; D..11.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=212.一個不透明的盒子里只裝有白色和紅色兩種顏色的球,這些球除顏色外沒有其他不同。若從盒子里隨機摸取一個球,有三種可能性相等的結果,設摸到的紅球的概率為P,則P的值為()A. B. C.或 D.或二、填空題(每題4分,共24分)13.為了某小區居民的用水情況,隨機抽查了10戶家庭的月用水量,結果如下表:月用水量(噸)

4

5

6

9

戶數

3

4

2

1

則關于這10戶家庭的約用水量,下列說法錯誤的是()A.中位數是5噸 B.極差是3噸 C.平均數是5.3噸 D.眾數是5噸14.如圖,在正方形ABCD中,對角線AC、BD交于點O,E是BC的中點,DE交AC于點F,則tan∠BDE=______.15.如圖,直線x=2與反比例函數和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.16.已知關于的方程的一個根為-2,則方程另一個根為__________.17.如圖,量角器的0度刻度線為,將一矩形直角與量角器部分重疊,使直尺一邊與量角器相切于點,直尺另一邊交量角器于點,量得,點在量角器上的度數為60°,則該直尺的寬度為_________________.18.若點A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函數的圖象上,則y1、y2、y3的大小關系是_________.三、解答題(共78分)19.(8分)如圖1,四邊形ABCD中,,,點P為DC上一點,且,分別過點A和點C作直線BP的垂線,垂足為點E和點F.證明:∽;若,求的值;如圖2,若,設的平分線AG交直線BP于當,時,求線段AG的長.20.(8分)已知函數解析式為y=(m-2)(1)若函數為正比例函數,試說明函數y隨x增大而減小(2)若函數為二次函數,寫出函數解析式,并寫出開口方向(3)若函數為反比例函數,寫出函數解析式,并說明函數在第幾象限21.(8分)如圖,在平面直角坐標系中,拋物線y=﹣x1+1x+a交x軸于點A,B,交y軸于點C,點A的橫坐標為﹣1.(1)求拋物線的對稱軸和函數表達式.(1)連結BC線段,BC上有一點D,過點D作x軸的平行線交拋物線于點E,F,若EF=6,求點D的坐標.22.(10分)如圖是某一蓄水池每小時的排水量/與排完水池中的水所用時間之間的函數關系的圖像.(1)請你根據圖像提供的信息寫出此函數的函數關系式;(2)若要6h排完水池中的水,那么每小時的排水量應該是多少?23.(10分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同.(1)攪勻后從袋子中任意摸出1個球,摸到紅球的概率是多少?(2)攪勻后先從袋子中任意摸出1個球,記錄顏色后不放回,再從袋子中任意摸出1個球,用畫樹狀圖或列表的方法列出所有等可能的結果,并求出兩次都摸到白球的概率.24.(10分)如圖1,拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.點D(2,3)在該拋物線上,直線AD與y軸相交于點E,點F是直線AD上方的拋物線上的動點.(1)求該拋物線對應的二次函數關系式;(2)當點F到直線AD距離最大時,求點F的坐標;(3)如圖2,點M是拋物線的頂點,點P的坐標為(0,n),點Q是坐標平面內一點,以A,M,P,Q為頂點的四邊形是AM為邊的矩形.①求n的值;②若點T和點Q關于AM所在直線對稱,求點T的坐標.25.(12分)小明同學解一元二次方程x2﹣6x﹣1=0的過程如圖所示.解:x2﹣6x=1…①x2﹣6x+9=1…②(x﹣3)2=1…③x﹣3=±1…④x1=4,x2=2…⑤(1)小明解方程的方法是.(A)直接開平方法(B)因式分解法(C)配方法(D)公式法他的求解過程從第步開始出現錯誤.(2)解這個方程.26.已知二次函數與軸交于、(在的左側)與軸交于點,連接、.(1)如圖1,點是直線上方拋物線上一點,當面積最大時,點分別為軸上的動點,連接、、,求的周長最小值;(2)如圖2,點關于軸的對稱點為點,將拋物線沿射線的方向平移得到新的拋物線,使得交軸于點(在的左側).將繞點順時針旋轉至.拋物線的對稱軸上有—動點,坐標系內是否存在一點,使得以、、、為頂點的四邊形是菱形,若存在,請直接寫出點的坐標;若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【分析】列表或畫樹狀圖得出所有等可能的結果,找出兩次都為紅球的情況數,即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數為20種,其中兩次都為紅球的情況有6種,∴,故選A.2、B【分析】根據一次函數和反比例函數的特點,k≠0,所以分k>0和k<0兩種情況討論;當兩函數系數k取相同符號值,兩函數圖象共存于同一坐標系內的即為正確答案.【詳解】解:分兩種情況討論:①當k>0時,y=kx﹣3與y軸的交點在負半軸,過一、三、四象限,反比例函數的圖象在第一、三象限;②當k<0時,y=kx﹣3與y軸的交點在負半軸,過二、三、四象限,反比例函數的圖象在第二、四象限,觀察只有B選項符合,故選B.【點睛】本題主要考查了反比例函數的圖象性質和一次函數的圖象性質,熟練掌握它們的性質才能靈活解題.3、A【分析】利用A點與C點為拋物線上的對稱點得到對稱軸為直線x=2,然后根據點B、D、E離對稱軸的遠近求解.【詳解】∵二次函數y=-x2+px+q的圖像經過A(,n)、C(,n),

∴拋物線開口向下,對稱軸為直線,∵點D(,y2)的橫坐標:,離對稱軸距離為,點E(,y3)的橫坐標:,離對稱軸距離為,∴B(0,y1)離對稱軸最近,點E離對稱軸最遠,∴y3<y2<y1.

故選:A.【點睛】本題考查了二次函數函數的性質,二次函數圖象上點的坐標特征:二次函數圖象上點的坐標特征滿足其解析式,根據拋物線上的對稱點坐標得到對稱軸是解題的關鍵.4、A【分析】如圖,在y軸上取點B'(0,﹣3),連接B'C,B'A,由勾股定理可求B'A=5,由三角形中位線定理可求B'C=2OP,當點C在線段B'A上時,B'C的長度最小值=5﹣2=3,當點C在線段B'A的延長線上時,B'C的長度最大值=5+2=7,即可求解.【詳解】解:如圖,在y軸上取點B'(0,﹣3),連接B'C,B'A,∵點B(0,3),B'(0,﹣3),點A(4,0),∴OB=OB'=3,OA=4,∴,∵點P是BC的中點,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,當點C在線段B'A上時,B'C的長度最小值=5﹣2=3,當點C在線段B'A的延長線上時,B'C的長度最大值=5+2=7,∴,故選:A.【點睛】本題考查了三角形中位線定理,勾股定理,平面直角坐標系,解決本題的關鍵是正確理解題意,熟練掌握三角形中位線定理的相關內容,能夠得到線段之間的數量關系.5、D【解析】根據二次函數的圖象與性質即可求出答案.【詳解】解:①由拋物線的對稱軸可知:,∴,由拋物線與軸的交點可知:,∴,∴,故①正確;②拋物線與軸只有一個交點,∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【點睛】考查二次函數的圖象與性質,解題的關鍵是熟練運用數形結合的思想.6、D【分析】由四邊形ABCD是正方形,得到AD=BC=AB,∠DAB=∠ABC=90°,即可證明△DAP≌△ABQ,根據全等三角形的性質得到∠P=∠Q,根據余角的性質得到AQ⊥DP;故①正確;根據相似三角形的性質得到AO2=OD?OP,故②正確;根據△CQF≌△BPE,得到S△CQF=S△BPE,根據△DAP≌△ABQ,得到S△DAP=S△ABQ,即可得到S△AOD=S四邊形OECF;故③正確;根據相似三角形的性質得到BE的長,進而求得QE的長,證明△QOE∽△POA,根據相似三角形對應邊成比例即可判斷④正確,即可得到結論.【詳解】∵四邊形ABCD是正方形,∴AD=BC=AB,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP與△ABQ中,∵,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP.故②正確;在△CQF與△BPE中,∵,∴△CQF≌△BPE,∴S△CQF=S△BPE.∵△DAP≌△ABQ,∴S△DAP=S△ABQ,∴S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=1.∵∠P=∠P,∠EBP=∠DAP=90°,∴△PBE∽△PAD,∴,∴BE,∴QE,∵∠Q=∠P,∠QOE=∠POA=90°,∴△QOE∽△POA,∴,∴,故④正確.故選:D.【點睛】本題考查了相似三角形的判定和性質,全等三角形的判定和性質,正方形的性質,熟練掌握全等三角形的判定和性質是解答本題的關鍵.7、C【解析】試題分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋轉而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等邊三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位線,∴DF=BC=×2=1,CF=AC=×2=,∴S陰影=DF×CF=×=.故選C.考點:1.旋轉的性質2.含30度角的直角三角形.8、B【解析】取EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,設OF=x,則OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】如圖:EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴四邊形CDMN是矩形,∴MN=CD=4,設OF=x,則ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故選B.【點睛】本題主考查垂徑定理及勾股定理的知識,正確作出輔助線構造直角三角形是解題的關鍵.9、B【分析】先根據圓錐側面積公式:求出圓錐的側面積,再加上底面積即得答案.【詳解】解:圓錐的側面積=,所以這個圓錐的全面積=.故選:B.【點睛】本題考查了圓錐的有關計算,屬于基礎題型,熟練掌握圓錐側面積的計算公式是解答的關鍵.10、B【分析】長度不為0的向量叫做非零向量,向量包括長度及方向,而長度等于1個單位長度的向量叫做單位向量,注意單位向量只規定大小沒規定方向,則可分析求解.【詳解】解:、左邊得出的是的方向不是單位向量,故錯誤;、符合向量的長度及方向,正確;、由于單位向量只限制長度,不確定方向,故錯誤;、左邊得出的是的方向,右邊得出的是的方向,兩者方向不一定相同,故錯誤.故選:.【點睛】本題考查了向量的性質.11、C【解析】試題解析:x(x+1)=0,

?x=0或x+1=0,

解得x1=0,x1=-1.

故選C.12、D【分析】分情況討論后,直接利用概率公式進行計算即可.【詳解】解:當白球1個,紅球2個時:摸到的紅球的概率為:P=當白球2個,紅球1個時:摸到的紅球的概率為:P=故摸到的紅球的概率為:或故選:D【點睛】本題考查了概率公式,掌握概率公式及分類討論是解題的關鍵.二、填空題(每題4分,共24分)13、B【詳解】解∵這10個數據是:4,4,4,5,5,5,5,6,6,9;∴中位數是:(5+5)÷2=5噸,故A正確;∴眾數是:5噸,故D正確;∴極差是:9﹣4=5噸,故B錯誤;∴平均數是:(3×4+4×5+2×6+9)÷10=5.3噸,故C正確.故選B.14、【分析】設AD=DC=a,根據勾股定理求出AC,易證△AFD∽△CFE,根據相似三角形的性質,可得:=2,進而求得CF,OF的長,由銳角的正切三角函數定義,即可求解.【詳解】∵四邊形ABCD是正方形,∴∠ADC=90°,AC⊥BD,設AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中點,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案為:.【點睛】本題主要考查相似三角形的判定和性質定理以及正切三角函數的定義,根據題意,設AD=DC=a,表示出OF,OD的長度,是解題的關鍵.15、.【詳解】解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.16、1【分析】將方程的根-2代入原方程求出m的值,再解方程即可求解.【詳解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程為:,解方程得:.故答案為:1.【點睛】本題考查的知識點是解一元二次方程,根據方程的一個解求出方程中參數的值是解此題的關鍵.17、【分析】連接OC,OD,OC與AD交于點E,根據圓周角定理有根據垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點E,直尺的寬度:故答案為【點睛】考查垂徑定理,熟記垂徑定理是解題的關鍵.18、y2>y1>y1【分析】根據反比例函數的圖象和性質,即可得到答案.【詳解】∵反比例函數的比例系數k<0,∴在每一個象限內,y隨x的增大而增大,∵點A(﹣4,y1)、B(﹣2,y2)、C(2,y1)都在反比例函數的圖象上,∴y2>y1>0,y1<0,∴y2>y1>y1.故答案是:y2>y1>y1.【點睛】本題主要考查反比例函數的圖象和性質,掌握反比例函數的增減性,是解題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2);(3).【分析】由余角的性質可得,即可證∽;由相似三角形的性質可得,由等腰三角形的性質可得,即可求的值;由題意可證∽,可得,可求,由等腰三角形的性質可得AE平分,可證,可得是等腰直角三角形,即可求AG的長.【詳解】證明:,又,又,∽∽,又,,如圖,延長AD與BG的延長線交于H點,∽∴,由可知≌,,代入上式可得,∽,,,∴,,平分又平分,,是等腰直角三角形.∴.【點睛】本題考查的知識點是全等三角形的判定和性質,相似三角形的判定和性質,解題關鍵是添加恰當輔助線構造相似三角形.20、(1)詳見解析;(2)y=-4x2,開口向下;(3)y=-x-1或y=-3x-1,函數在二四象限【分析】(1)根據正比例函數的定義求出m,再確定m-2的正負,即可確定增減性;(2)根據二次函數的定義求出m,再確定m-2的值,即可確定函數解析式和開口方向;(3)由題意可得-2=-1,求出m即可確定函數解析式和圖像所在象限.【詳解】解:(1)若為正比例函數則-2=1,m=±,∴m-2<0,函數y隨x增大而減小;(2)若函數為二次函數,-2=2且m-2≠0,∴m=-2,函數解析式為y=-4x2,開口向下(3)若函數為反比例函數,-2=-1,m=±1,m-2<0,解析式為y=-x-1或y=-3x-1,函數在二四象限【點睛】本題考查了正比例、二次函數、反比例函數的定義,理解各種函數的定義及其內涵是解答本題的關鍵.21、(1)y=﹣x1+1x+6;對稱軸為x=1;(1)點D的坐標為(1.5,3.5).【分析】(1)將點A的坐標代入函數的解析式求得a的值后即可確定二次的解析式,代入對稱軸公式即可求得對稱軸;(1)首先根據點A的坐標和對稱軸求得點B的坐標,然后求得直線BC的解析式,從而設出點D的坐標并表示出點EF的坐標,表示出EF的長后根據EF=6求解即可.【詳解】解:如圖:(1)∵A點的橫坐標為﹣1,∴A(﹣1,0),∵點A在拋物線y=﹣x1+1x+a上,∴﹣1﹣4+a=0,解得:a=6,∴函數的解析式為:y=﹣x1+1x+6,∴對稱軸為x=﹣=﹣=1;(1)∵A(﹣1,0),對稱軸為x=1,∴點B的坐標為(6,0),∴直線BC的解析式為y=﹣x+6,∵點D在BC上,∴設點D的坐標為(m,﹣m+6),∴點E和點F的縱坐標為﹣m+6,∴y=﹣x1+1x+6=﹣m+6,解得:x=1±,∴EF=1+﹣(1﹣)=1,∵EF=6,∴1=6,解得:m=1.5,∴點D的坐標為(1.5,3.5).【點睛】考查了待定系數法確定二次函數的解析式及拋物線與坐標軸的交點問題,解題的關鍵是正確的求得函數的解析式,難度不大.22、(1);(2)8m3【分析】(1)根據函數圖象為雙曲線的一支,可設,又知(12,4)在此函數圖象上,利用待定系數法求出函數的解析式;(2)把t=6代入函數的解析式即可求出每小時的排水量.【詳解】(1)根據函數圖象為雙曲線的一支,可設,又知(12,4)在此函數圖象上,則把(12,4)代入解析式得:,解得k=48,則函數關系式為:;(2)把t=6代入得:,則每小時的排水量應該是8m3.【點睛】主要考查了反比例函數的應用,解題的關鍵是根據實際意義列出函數關系式,從實際意義中找到對應的變量的值,利用待定系數法求出函數解析式.23、(1);(2),見解析【分析】(1)袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,摸到紅球的概率即可求出;(2)分別使用樹狀圖法或列表法將抽取球的結果表示出來,第一次共有3種不同的抽取情況,第二次有2種不同的抽取情況,所有等可能出現的結果有6種,找出兩次都是白球的的抽取結果,即可算出概率.【詳解】解:(1)∵袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,∴;(2)畫樹狀圖,根據題意,畫樹狀圖結果如下:一共有6種等可能出現的結果,兩次都抽取到白球的次數為2次,∴;用列表法,根據題意,列表結果如下:一共有6種等可能出現的結果,兩次都抽取到白球的次數為2次,∴.【點睛】本題考查了列表法或樹狀圖法求概率,用圖表的形式將第一次、第二次抽取所可能發生的情況一一列出,避免遺漏.24、(1)y=-x2+2x+3;(2)F(,);(3)n=,T(0,-)或n=-,T(0,).【分析】(1)用待定系數法求解即可;(2)作FH⊥AD,過點F作FM⊥x軸,交AD與M,易知當S△FAD最大時,點F到直線AD距離FH最大,求出直線AD的解析式,設F(t,-t2+2t+3),M(t,t+1),表示出△FAD的面積,然后利用二次函數的性質求解即可;(3)分AP為對角線和AM為對角線兩種情況求解即可.【詳解】解:(1)∵拋物線x軸相交于點A(-1,0),B(3,0),∴設該拋物線對應的二次函數關系式為y=a(x+1)(x-3),∵點D(2,3)在拋物線上,∴3=a×(2+1)×(2-3),∴3=-3a,∴a=-1,∴y=-(x+1)(x-3),即y=-x2+2x+3;(2)如圖1,作FH⊥AD,過點F作FM⊥x軸,交AD與M,易知當S△FAD最大時,點F到直線AD距離FH最大,設直線AD為y=kx+b,∵A(-1,0),D(2,3),∴,∴,∴直線AD為y=x+1.設點F的橫坐標為t,則F(t,-t2+2t+3),M(t,t+1),∵S△FAD=S△AMF+S△DMF=MF(Dx-Ax)=×3(-t2+2t+3-t-1)=×3(-t2+t+2)=-(t-)2+,∴即當t=時,S△FAD最大,∵當x=時,y=-()2+2×+3=,∴F(,);(3)∵y=-x2+2x+3=-(x-1)2+4,∴頂點M(1,4).當AP為對角線時,如圖2,設拋物線對稱軸交x軸于點R,作PS⊥MR,∵∠PMS+∠AMR=90°,∠MAR+∠AMR=90°,∴∠PMA=∠MAR,∵∠PSM=∠ARM=90°,∴△PMS∽△MAR,∴,∴,∴MS=,∴OP=RS=4+=,∴n=;延長QA交y軸于T,∵PM∥AQ,∴∠MPO=∠OAM,∵∠MPS+∠MPO=90°,∠OAT+∠OAM=90°,∴∠MPS=∠OAT.又∵PS=OA=1,∠PSM=∠AOT=90°,∴△PSM≌△AOT,∴AT=PM=AQ,OT=MS=.∵AM⊥AQ,∴T和Q關于AM對稱,∴T(0,-);當AQ為對角線時,如圖3,過A作SR⊥x軸,作PS⊥SR于S,作MR⊥SR于R,∵∠RAM+∠SAP=90°,∠SAP+∠SPA=90°,∴∠RAM=∠SPA,∵∠PSA=∠ARM=90°,∴△PSA∽△ARM,∴,∴,∴AS=,∴OP=,∴n=-;延長QM交y軸于T,∵QM∥AP,∴∠APT=∠MTP,∵∠OAP+∠APT=90°,∠GMT+∠MTP=90°,∴∠OAP=∠GMT.又∵GM=OA=1,∠AOP=∠MGT=90°,∴△OAP≌△GMT,∴MT=AP=MQ,GT=OP=.∵AM⊥TQ,∴T和Q關于AM對稱,∵OT=4+=,∴T(0,).綜上可知,n=,T(0,-)或n=-,T(0,).【點睛】本題考查了待定系數法求二次函數和一次函數解析式,割補法求圖形的面積,利用二次函數求最值,相似三角形的判定與性質,全等三角形的判定與性質,矩形的性質,以及分類討論的數學思想,用到的知識點較多,難度較大,樹中考壓軸題.25、(1)C,②;(2)x1=+1,x2=﹣+1.【分析】(1)認真分析小明的解答過程即可發現其在第幾步出現錯誤、然后作答即可;(2)用配方法解該二元一次方程即可.【詳解】解:(1)由小明的解答過程可知,他采用的是配方法解方程,故選:C,他的求解過程從第②步

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論