




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.同時擲兩個質地均勻的骰子,觀察向上一面的點數,兩個骰子的點數相同的概率為()A. B. C. D.2.如圖,在平面直角坐標系中,點的坐標為,那么的值是()A. B. C. D.3.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的個數有()A.1個 B.2個 C.3個 D.4個4.小明將如圖兩水平線l1、l2的其中一條當成x軸,且向右為正方向;兩條直線l3、l4的其中一條當成y軸,且向上為正方向,并在此坐標平面中畫出二次函數y=ax2﹣2a2x+1的圖象,則()A.l1為x軸,l3為y軸 B.l2為x軸,l3為y軸C.l1為x軸,l4為y軸 D.l2為x軸,l4為y軸5.某水果園2017年水果產量為50噸,2019年水果產量為70噸,求該果園水果產量的年平均增長率.設該果園水果產量的年平均增長率為,則根據題意可列方程為()A. B.C. D.6.經過某十字路口的汽車,可能直行,也可能向左轉或向右轉,如果這三種可能性大小相同,則兩輛汽車經過這個十字路口時,一輛向右轉,一輛向左轉的概率是()A. B. C. D.7.如圖,在△ABC中,∠A=45°,∠C=90°,點D在線段AC上,∠BDC=60°,AD=1,則BD等于()A. B.+1 C.-1 D.8.如圖,在△ABC中,∠A=90°.若AB=12,AC=5,則cosC的值為()A. B. C. D.9.若△ABC∽△ADE,若AB=9,AC=6,AD=3,則EC的長是()A.2 B.3 C.4 D.510.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosA的值是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在中,,,,則的長為_____.12.已知三角形的兩邊分別是3和4,第三邊的數值是方程x2﹣9x+14=0的根,則這個三角形的周長為_____.13.如圖,點,,均在的正方形網格格點上,過,,三點的外接圓除經過,,三點外還能經過的格點數為.14.在平面直角坐標系中,解析式為的直線、解析式為的直線如圖所示,直線交軸于點,以為邊作第一個等邊三角形,過點作軸的平行線交直線于點,以為邊作第二個等邊三角形,……順次這樣做下去,第2020個等邊三角形的邊長為______.15.如圖,以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′的面積比是_____.16.如圖,是的直徑,點和點是上位于直徑兩側的點,連結,,,,若的半徑是,,則的值是_____________.17.函數沿直線翻折所得函數解析式為_____________.18.若,則______.三、解答題(共66分)19.(10分)如圖,AB是⊙O的直徑,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度數;(2)若AD=,求DB的長.20.(6分)如圖,△ABC和△DEF均為正三角形,D,E分別在AB,BC上,請找出一個與△DBE相似的三角形并證明.21.(6分)解方程:2x2﹣4x+1=1.22.(8分)甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.(1)求從袋中隨機摸出一球,標號是1的概率;(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數時,則甲勝;若兩次摸出的球的標號之和為奇數時,則乙勝;試分析這個游戲是否公平?請說明理由.23.(8分)在菱形中,,延長至點,延長至點,使,連結,,延長交于點.(1)求證:;(2)求的度數.24.(8分)如圖,在平面內。點為線段上任意一點.對于該平面內任意的點,若滿足小于等于則稱點為線段的“限距點”.(1)在平面直角坐標系中,若點.①在的點中,是線段的“限距點”的是;②點P是直線上一點,若點P是線段AB的“限距點”,請求出點P橫坐標的取值范圍.(2)在平面直角坐標系中,若點.若直線上存在線段AB的“限距點”,請直接寫出的取值范圍25.(10分)在一個不透明的袋子中裝有3個乒乓球,分別標有數字1,2,3,這些乒乓球除所標數字不同外其余均相同.先從袋子中隨機摸出1個乒乓球,記下標號后放回,再從袋子中隨機摸出1個乒乓球記下標號,用畫樹狀圖(或列表)的方法,求兩次摸出的乒乓球標號之和是偶數的概率.26.(10分)如圖,AB是⊙O的直徑,點C,D在圓上,且四邊形AOCD是平行四邊形,過點D作⊙O的切線,分別交OA的延長線與OC的延長線于點E,F,連接BF.(1)求證:BF是⊙O的切線;(2)已知圓的半徑為1,求EF的長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】首先列表,然后根據表格求得所有等可能的結果與兩個骰子的點數相同的情況,再根據概率公式求解即可.【詳解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36種等可能的結果,兩個骰子的點數相同的有6種情況,
∴兩個骰子的點數相同的概率為:故選:C【點睛】此題考查了樹狀圖法與列表法求概率.注意樹狀圖法與列表法可以不重不漏的表示出所有等可能的結果.用到的知識點為:概率=所求情況數與總情況數之比2、D【分析】過A作AB⊥x軸于點B,在Rt△AOB中,利用勾股定理求出OA,再根據正弦的定義即可求解.【詳解】如圖,過A作AB⊥x軸于點B,∵A的坐標為(4,3)∴OB=4,AB=3,在Rt△AOB中,∴故選:D.【點睛】本題考查求正弦值,利用坐標求出直角三角形的邊長是解題的關鍵.3、B【分析】根據軸對稱圖形與中心對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸,如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.【詳解】(1)是軸對稱圖形,不是中心對稱圖形.不符合題意;(2)不是軸對稱圖形,是中心對稱圖形,不符合題意;(3)是軸對稱圖形,也是中心對稱圖形,符合題意;(4)是軸對稱圖形,也是中心對稱圖形,符合題意;故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形關鍵是要尋找對稱中心,圖形旋轉180°后與原圖重合.4、D【分析】根據拋物線的開口向下,可得a<0,求出對稱軸為:直線x=a,則可確定l4為y軸,再根據圖象與y軸交點,可得出l2為x軸,即可得出答案.【詳解】解:∵拋物線的開口向下,∴a<0,∵y=ax2﹣2a2x+1,∴對稱軸為:直線x=a<0,令x=0,則y=1,∴拋物線與y軸的正半軸相交,∴l2為x軸,l4為y軸.故選:D.【點睛】本題考查了二次函數的性質,開口方向由a確定,與y軸的交點由c確定,左同右異確定b的符號.5、B【分析】根據2019年的產量=2017年的產量×(1+年平均增長率)2,即可列出方程.【詳解】解:根據題意可得,2018年的產量為50(1+x),
2019年的產量為50(1+x)(1+x)=50(1+x)2,
即所列的方程為:50(1+x)2=1.
故選:B.【點睛】此題主要考查了一元二次方程的應用,解題關鍵是要讀懂題意,根據題目給出的條件,找出合適的等量關系,列出方程.6、B【分析】可以采用列表法或樹狀圖求解.可以得到一共有9種情況,一輛向右轉,一輛向左轉有2種結果數,根據概率公式計算可得.【詳解】畫“樹形圖”如圖所示:∵這兩輛汽車行駛方向共有9種可能的結果,其中一輛向右轉,一輛向左轉的情況有2種,∴一輛向右轉,一輛向左轉的概率為;故選B.【點睛】此題考查了樹狀圖法求概率.解題的關鍵是根據題意畫出樹狀圖,再由概率=所求情況數與總情況數之比求解7、B【分析】設BC=x,根據銳角三角函數分別用x表示出AC和CD,然后利用AC-CD=AD列方程即可求出BC,再根據銳角三角函數即可求出BD.【詳解】解:設BC=x∵在△ABC中,∠A=45°,∠C=90°,∴AC=BC=x在Rt△BCD中,CD=∵AC-CD=AD,AD=1∴解得:即BC=在Rt△BCD中,BD=故選:B.【點睛】此題考查的是解直角三角形的應用,掌握用銳角三角函數解直角三角形是解決此題的關鍵.8、A【解析】∵∠A=90°,AC=5,AB=12,∴BC==13,∴cosC=,故選A.9、C【分析】利用相似三角形的性質得,對應邊的比相等,求出AE的長,EC=AC-AE,即可計算DE的長;【詳解】∵△ABC∽△ADE,∴,∵AB=9,AC=6,AD=3,∴AE=2,即EC=AC-AE=6-2=4;故選C.【點睛】本題主要考查了相似三角形的判定與性質,掌握相似三角形的判定與性質是解題的關鍵.10、B【解析】根據勾股定理,可得AB的長,根據銳角的余弦等于鄰邊比斜邊,可得答案.【詳解】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,
由勾股定理,得AB==5cosA==故選:B.【點睛】本題考查銳角三角函數的定義,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.二、填空題(每小題3分,共24分)11、【解析】過A作AD垂直于BC,在直角三角形ABD中,利用銳角三角函數定義求出AD的長,在直角三角形ACD中,利用銳角三角函數定義求出CD的長,再利用勾股定理求出AC的長即可.【詳解】解:過作,在中,,,∴,在中,,∴,即,根據勾股定理得:,故答案為【點睛】此題考查了解直角三角形,涉及的知識有:銳角三角函數定義,以及勾股定理,熟練掌握各自的性質是解本題的關鍵.12、1.【分析】求出方程的解,再看看是否符合三角形三邊關系定理即可解答.【詳解】∵x2﹣1x+14=0,∴(x﹣2)(x﹣7)=0,則x﹣2=0或x﹣7=0,解得x=2或x=7,當x=2時,三角形的周長為2+3+4=1;當x=7時,3+4=7,不能構成三角形;故答案為:1.【點睛】本題考查解一元二次方程和三角形三邊關系定理的應用,解題的關鍵是確定三角形的第三邊.13、1.【解析】試題分析:根據圓的確定先做出過A,B,C三點的外接圓,從而得出答案.如圖,分別作AB、BC的中垂線,兩直線的交點為O,以O為圓心、OA為半徑作圓,則⊙O即為過A,B,C三點的外接圓,由圖可知,⊙O還經過點D、E、F、G、H這1個格點,故答案為1.考點:圓的有關性質.14、【分析】由題意利用一次函數的性質以及等邊三角形性質結合相似三角形的性質進行綜合分析求解.【詳解】解:將代入分別兩個解析式可以求出AO=1,∵為邊作第一個等邊三角形,∴BO=1,過B作x軸的垂線交x軸于點D,由可得,即,∴,,即B的橫軸坐標為,∵與軸平行,∴將代入分別兩個解析式可以求出,∵,∴,即相鄰兩個三角形的相似比為2,∴第2020個等邊三角形的邊長為.故答案為:.【點睛】本題考查一次函數圖形的性質以及等邊三角形性質和相似三角形的性質的綜合問題,熟練掌握相關知識并運用數形結合思維分析是解題的關鍵.15、1:1.【解析】根據位似變換的性質定義得到四邊形ABCD與四邊形A′B′C′D′相似,根據相似多邊形的性質計算即可.【詳解】解:以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′相似,相似比為1:2,∴四邊形ABCD與四邊形A′B′C′D′的面積比是1:1,故答案為:1:1.【點睛】本題考查的是位似變換,如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形.16、【分析】根據題意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【詳解】解:∵是的直徑,∴∠ADB=90°∴∠ACD=∠ABD∵的半徑是,,∴故答案為:【點睛】本題考查的是銳角三角函數值.17、【解析】函數沿直線翻折所得函數圖像開口向下,只要根據軸對稱的性質求出對稱后的頂點坐標即可.【詳解】∵=(x-1)2+3,∴其頂點坐標是(1,3),∵(1,3)關于直線的點的坐標是(1,-1),∴所得函數解析式為(x-1)2-1.故答案為:.【點睛】本題考查了二次函數的軸對稱變換,其形狀不變,但開口方向相反,因此a值為原來的相反數,頂點位置改變,只要根據軸對稱的點坐標特征求出新的頂點坐標,即可確定解析式.18、【分析】利用“設法”表示出,然后代入等式,計算即可.【詳解】設,則:,∴,故答案為:.【點睛】本題考查了比例的性質,利用“設法”表示出是解題的關鍵.三、解答題(共66分)19、(1)60°;(2)3【分析】(1)根據圓周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后利用互余可計算出∠BAD的度數;(2)利用含30度的直角三角形三邊的關系求解.【詳解】解:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°;(2)在Rt△ADB中,.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.20、△GAD或△ECH或△GFH,證△GAD∽△DBE.見解析.【分析】根據已知及相似三角形的判定方法即可找到存在的相似三角形.【詳解】解:△ECH,△GFH,△GAD均與△DBE相似,任選一對即可.如選△GAD證明如下:證明:∵△ABC與△EFD均為等邊三角形,∴∠A=∠B=60°.又∵∠BDG=∠A+∠AGD,即∠BDE+60°=∠AGD+60°,∴∠BDE=∠AGD.∴△DBE∽△GAD.點睛:等量關系證明兩對應角相等是關鍵,考查了三角形的性質及相似三角形的判定.21、x1=1+,x2=1﹣【分析】先把方程兩邊除以2,變形得到x2-2x+1=,然后利用配方法求解.【詳解】x2-2x+1=,
(x-1)2=,
x-1=±,
所以x1=1+,x2=1-.【點睛】此題考查解一元二次方程-配方法,解題關鍵在于掌握運算法則.22、(1);(2)這個游戲不公平,理由見解析.【分析】(1)由把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與甲勝,乙勝的情況,即可求得求概率,比較大小,即可知這個游戲是否公平.【詳解】解:(1)由于三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,故從袋中隨機摸出一球,標號是1的概率為:;(2)這個游戲不公平.畫樹狀圖得:∵共有9種等可能的結果,兩次摸出的球的標號之和為偶數的有5種情況,兩次摸出的球的標號之和為奇數的有4種情況,∴P(甲勝)=,P(乙勝)=.∴P(甲勝)≠P(乙勝),故這個游戲不公平.【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.23、(1)見詳解;(2)60°【分析】(1)先判斷出△ABC是等邊三角形,由等邊三角形的性質可得BC=AC,∠ACB=∠ABC,再求出CE=BF,然后利用“邊角邊”證明即可;
(2)由△ACE≌△CBF,根據全等三角形對應角相等可得∠E=∠F,然后根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠CGE=∠ABC即可.【詳解】(1)證明:∵菱形,,∴是等邊三角形,∴,,∵,∴,即,在和中,∵,∴.(2)解:∵,∴,∵,∴,∴,∵,∴.【點睛】本題考查了全等三角形的判定與性質,等邊三角形的判定與性質,菱形的性質等知識;熟記性質并確定出三角形全等的條件是解題的關鍵24、(1)①E;②;(2).【分析】(1)①分別計算出C、D、E到A、B的距離,根據“限距點”的含義即可判定;②畫出圖形,由“限距點”的定義可知,當點P位于直線上x軸上方并且AP時,點P是線段AB的“限距點”,據此可解;(2)畫出圖形,可知當時,直線上存在線段AB的“限距點”,據此可解.【詳解】(1)①計算可知AC=BC=,DA=,DB=,EA=EB=2,設點為線段上任意一點,則,,,∴,∴點E為線段AB的“限距點”.故答案是:E.②如圖,作PF⊥x軸于F,由“限距點”的定義可知,當點P位于直線上x軸上方并且AP時,點P是線段AB的“限距點”,∵直線與x軸交于點A(-1,0),交y軸于點H(0,),∴∠OAH=30°,∴當AP=2時,AF=,∴此時點P的橫坐標為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國可伸縮乒乓球網格行業市場全景分析及前景機遇研判報告
- 2025年中國咖啡機清潔液行業市場全景分析及前景機遇研判報告
- 癌癥康復期用藥指南
- 中國防雷避雷產品行業市場深度分析及行業發展趨勢報告
- 2019-2025年中國定制酒行業市場深度分析及發展前景預測報告
- 網圍欄可行性研究報告
- 中國電動自行車電商行業發展監測及市場發展潛力預測報告
- 2025年中國豆腐行業市場深度分析及發展前景預測報告
- 起重安裝項目投資可行性研究分析報告(2024-2030版)
- 2025年 云南省觀光車駕駛-特種設備作業N2證考試練習題附答案
- 小學生匯報講課件
- 2025浙江嘉興市海寧市嘉睿人力招聘5人筆試參考題庫附帶答案詳解析版
- 2025年安徽蚌埠市龍子湖區東方人力資源有限公司招聘筆試參考題庫含答案解析
- 黨課課件含講稿:《關于加強黨的作風建設論述摘編》輔導報告
- GB/T 19023-2025質量管理體系成文信息指南
- 2025中考歷史高頻點速記大全
- 2025年特種設備作業人員氣瓶充裝P證考試題庫
- 多余物管理制度
- 2024北京朝陽區三年級(下)期末語文試題及答案
- 灌腸技術操作課件
- 電梯維保服務投標方案
評論
0/150
提交評論