




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,在△ABC中,∠BAC=65°,將△ABC繞點A逆時針旋轉,得到△AB'C',連接C'C.若C'C∥AB,則∠BAB'的度數(shù)為()A.65° B.50° C.80° D.130°2.點A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函數(shù)y=﹣的圖象上,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y33.二次函數(shù)y=x2+4x+3的圖象可以由二次函數(shù)y=x2的圖象平移而得到,下列平移正確的是()A.先向左平移2個單位,再先向上平移1個單位B.先向左平移2個單位,再先向下平移1個單位C.先向右平移2個單位,再先向上平移1個單位D.先向右平移2個單位,再先向下平移1個單位4.下列運算中,計算結果正確的是()A.a4?a=a4 B.a6÷a3=a2 C.(a3)2=a6 D.(ab)3=a3b5.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結i論:①abc>1;②b2﹣4ac>1;③2a+b=1;④a﹣b+c<1.其中正確的結論有()A.1個 B.2個 C.3個 D.4個6.當取下列何值時,關于的一元二次方程有兩個相等的實數(shù)根()A.1. B.2 C.4. D.7.下列由幾何圖形組合的圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.8.某射擊運動員在同一條件下的射擊成績記錄如表:射擊次數(shù)1002004001000“射中9環(huán)以上”的次數(shù)78158321801“射中9環(huán)以上”的頻率0.780.790.80250.801根據(jù)表中數(shù)據(jù),估計這位射擊運動員射擊一次時“射中9環(huán)以上”的概率為()A.0.78 B.0.79 C.0.85 D.0.809.下列拋物線中,其頂點在反比例函數(shù)y=的圖象上的是()A.y=(x﹣4)2+3 B.y=(x﹣4)2﹣3 C.y=(x+2)2+1 D.y=(x+2)2﹣110.在同一時刻,身高1.5米的小紅在陽光下的影長2米,則影長為6米的大樹的高是()A.4.5米 B.8米 C.5米 D.5.5米11.已知關于x的方程ax2+bx+c=0(a≠0),則下列判斷中不正確的是()A.若方程有一根為1,則a+b+c=0B.若a,c異號,則方程必有解C.若b=0,則方程兩根互為相反數(shù)D.若c=0,則方程有一根為012.若∽,,,,則的長為()A.4 B.5 C.6 D.7二、填空題(每題4分,共24分)13.若一組數(shù)據(jù)1,2,x,4的平均數(shù)是2,則這組數(shù)據(jù)的方差為_____.14.如圖,E,F(xiàn)分別為矩形ABCD的邊AD,BC的中點,且矩形ABCD與矩形EABF相似,AB=1,則BC的長為_____.15.若關于x的一元二次方程x2+4x+k﹣1=0有實數(shù)根,則k的取值范圍是____.16.一個扇形的圓心角為120°,半徑為3,則這個扇形的面積為(結果保留π)17.如圖,在中,,,,用含和的代數(shù)式表示的值為:_________.18.已知是一元二次方程的一個根,則的值是______.三、解答題(共78分)19.(8分)某食品廠生產一種半成品食材,成本為2元/千克,每天的產量P(百千克)與銷售價格x(元/千克)滿足函數(shù)關系式p=x+1.從市場反饋的信息發(fā)現(xiàn),該食材每天的市場需求量q(百千克)與銷售價格x(元/千克)滿足一次函數(shù)關系,部分數(shù)據(jù)如表:銷售價格x(元/千克)24……10市場需求量q(百千克)1210……4已知按物價部門規(guī)定銷售價格x不低于2元/千克且不高于10元/千克,(1)直接寫出q與x的函數(shù)關系式,并注明自變量x的取值范圍;(2)當每天的產量小于或等于市場需求量時,這種食材能全部售出;當每天的產量大于市場需求量時,只能售出市場需求的量,而剩余的食材由于保質期短作廢棄處理;①當每天的食材能全部售出時,求x的取值范圍;②求廠家每天獲得的利潤y(百元)與銷售價格x的函數(shù)關系式;(3)在(2)的條件下,當x為多少時,y有最大值,并求出最大利潤.20.(8分)定義:點P在△ABC的邊上,且與△ABC的頂點不重合.若滿足△PAB、△PBC、△PAC至少有一個三角形與△ABC相似(但不全等),則稱點P為△ABC的自相似點.如圖①,已知點A、B、C的坐標分別為(1,0)、(3,0)、(0,1).(1)若點P的坐標為(2,0),求證點P是△ABC的自相似點;(2)求除點(2,0)外△ABC所有自相似點的坐標;(3)如圖②,過點B作DB⊥BC交直線AC于點D,在直線AC上是否存在點G,使△GBD與△GBC有公共的自相似點?若存在,請舉例說明;若不存在,請說明理由.21.(8分)如圖,直線y=﹣x+1與x軸,y軸分別交于A,B兩點,拋物線y=ax2+bx+c過點B,并且頂點D的坐標為(﹣2,﹣1).(1)求該拋物線的解析式;(2)若拋物線與直線AB的另一個交點為F,點C是線段BF的中點,過點C作BF的垂線交拋物線于點P,Q,求線段PQ的長度;(3)在(2)的條件下,點M是直線AB上一點,點N是線段PQ的中點,若PQ=2MN,直接寫出點M的坐標.22.(10分)如圖,一次函數(shù)y1=k1x+b與反比例函數(shù)y1=的圖象交于點A(a,﹣1)和B(1,3),且直線AB交y軸于點C,連接OA、OB.(1)求反比例函數(shù)的解析式和點A的坐標;(1)根據(jù)圖象直接寫出:當x在什么范圍取值時,y1<y1.23.(10分)解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).24.(10分)已知,在平面直角坐標系中,二次函數(shù)的圖象與軸交于點,與軸交于點,點的坐標為,點的坐標為.
(1)如圖1,分別求的值;(2)如圖2,點為第一象限的拋物線上一點,連接并延長交拋物線于點,,求點的坐標;(3)在(2)的條件下,點為第一象限的拋物線上一點,過點作軸于點,連接、,點為第二象限的拋物線上一點,且點與點關于拋物線的對稱軸對稱,連接,設,,點為線段上一點,點為第三象限的拋物線上一點,分別連接,滿足,,過點作的平行線,交軸于點,求直線的解析式.25.(12分)如圖,直線AC與⊙O相切于點A,點B為⊙O上一點,且OC⊥OB于點O,連接AB交OC于點D.(1)求證:AC=CD;(2)若AC=3,OB=4,求OD的長度.26.計算:(1)()(2)-14+
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)平行線的性質可得,然后根據(jù)旋轉的性質可得,,根據(jù)等邊對等角可得,利用三角形的內角和定理求出,根據(jù)等式的基本性質可得,從而求出結論.【詳解】解:∵∠BAC=65°,∥AB∴由旋轉的性質可得,∴,∴,∴故選B.【點睛】此題考查的是平行線的性質、旋轉的性質和等腰三角形的性質,掌握平行線的性質、旋轉的性質和等邊對等角是解決此題的關鍵.2、C【解析】將x的值代入函數(shù)解析式中求出函數(shù)值y即可判斷.【詳解】當x=-3時,y1=1,
當x=-1時,y2=3,
當x=1時,y3=-3,
∴y3<y1<y2
故選:C.【點睛】考查反比例函數(shù)圖象上的點的特征,解題的關鍵是靈活運用所學知識解決問題.3、B【解析】試題分析:因為函數(shù)y=x2的圖象沿y軸向下平移1個單位長度,所以根據(jù)左加右減,上加下減的規(guī)律,直接在函數(shù)上加1可得新函數(shù)y=x2﹣1;然后再沿x軸向左平移2個單位長度,可得新函數(shù)y=(x+2)2﹣1.解:∵函數(shù)y=x2的圖象沿沿x軸向左平移2個單位長度,得,y=(x+2)2;然后y軸向下平移1個單位長度,得,y=(x+2)2﹣1;故可以得到函數(shù)y=(x+2)2﹣1的圖象.故選B.考點:二次函數(shù)圖象與幾何變換.4、C【分析】根據(jù)冪的運算法則即可判斷.【詳解】A、a4?a=a5,故此選項錯誤;B、a6÷a3=a3,故此選項錯誤;C、(a3)2=a6,正確;D、(ab)3=a3b3,故此選項錯誤;故選C.【點睛】此題主要考查冪的運算,解題的關鍵是熟知冪的運算公式.5、C【分析】首先根據(jù)開口方向確定a的取值范圍,根據(jù)對稱軸的位置確定b的取值范圍,根據(jù)拋物線與y軸的交點確定c的取值范圍,根據(jù)拋物線與x軸是否有交點確定b2﹣4ac的取值范圍,根據(jù)x=﹣1函數(shù)值可以判斷.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸的交點在軸的上方,,,故①錯誤;拋物線與軸有兩個交點,,故②正確;對稱軸,,,故③正確;根據(jù)圖象可知,當時,,故④正確;故選:.【點睛】此題主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求與的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用是解題關鍵.6、A【分析】根據(jù)一元二次方程的判別式判斷即可.【詳解】要使得方程由兩個相等實數(shù)根,判別式△=(-2)2-4m=4-4m=0,解得m=1.故選A.【點睛】本題考查一元二次方程判別式的計算,關鍵在于熟記判別式與根的關系.7、A【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義逐項判斷即得答案.【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,故本選項符合題意;B、是軸對稱圖形,但不是中心對稱圖形,故本選項不符合題意;C、是中心對稱圖形,但不是軸對稱圖形,故本選項不符合題意;D、是中心對稱圖形,但不是軸對稱圖形,故本選項不符合題意.故選:A.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,屬于應知應會題型,熟知二者的概念是解題關鍵.8、D【分析】根據(jù)大量的實驗結果穩(wěn)定在0.8左右即可得出結論.【詳解】∵從頻率的波動情況可以發(fā)現(xiàn)頻率穩(wěn)定在0.1附近,∴這名運動員射擊一次時“射中9環(huán)以上”的概率是0.1.故選:D.【點睛】本題考查利用頻率估計概率,在相同的條件下做大量重復試驗,一個事件A出現(xiàn)的次數(shù)和總的試驗次數(shù)n之比,稱為事件A在這n次試驗中出現(xiàn)的頻率.當試驗次數(shù)n很大時,頻率將穩(wěn)定在一個常數(shù)附近.n越大,頻率偏離這個常數(shù)較大的可能性越小.這個常數(shù)稱為這個事件的概率.9、A【分析】根據(jù)y=得k=xy=12,所以只要點的橫坐標與縱坐標的積等于12,就在函數(shù)圖象上.【詳解】解:∵y=,∴k=xy=12,A、y=(x﹣4)2+3的頂點為(4,3),4×3=12,故y=(x﹣4)2+3的頂點在反比例函數(shù)y=的圖象上,B、y=(x﹣4)2﹣3的頂點為(4,﹣3),4×(﹣3)=﹣12≠12,故y=(x﹣4)2﹣3的頂點不在反比例函數(shù)y=的圖象上,C、y=(x+2)2+1的頂點為(﹣2,1),﹣2×1=﹣2≠12,故y=(x+2)2+1的頂點不在反比例函數(shù)y=的圖象上,D、y=(x+2)2﹣1的頂點為(﹣2,﹣1),﹣2×(﹣1)=2≠12,故y=(x+2)2﹣1的頂點不在反比例函數(shù)y=的圖象上,故選:A.【點睛】本題考查的知識點是拋物線的頂點坐標以及反比例函數(shù)圖象上點的坐標,根據(jù)拋物線的解析式確定拋物線的頂點坐標是解此題的關鍵.10、A【解析】根據(jù)同一時刻的兩個物體,影子,經過物體頂部的太陽光線三者構成的兩個直角三角形相似即可得.【詳解】如圖,由題意可得:由相似三角形的性質得:,即解得:(米)故選:A.【點睛】本題考查了相似三角形的性質,理解題意,將問題轉化為利用相似三角形的性質求解是解題關鍵.11、C【分析】將x=1代入方程即可判斷A,利用根的判別式可判斷B,將b=1代入方程,再用判別式判斷C,將c=1代入方程,可判斷D.【詳解】A.若方程有一根為1,把x=1代入原方程,則,故A正確;B.若a、c異號,則△=,∴方程必有解,故B正確;C.若b=1,只有當△=時,方程兩根互為相反數(shù),故C錯誤;D.若c=1,則方程變?yōu)椋赜幸桓鶠?.故選C.【點睛】本題考查一元二次方程的相關概念,熟練掌握一元二次方程的定義和解法是關鍵.12、C【分析】利用相似三角形的性質,列出比例式即可解決問題.【詳解】解:∵△ABC∽△DEF,,,,∴,∴,∴EF=6.故選C.【點睛】本題考查相似三角形的性質,解題的關鍵是熟練掌握相似三角形的對應邊成比例,屬于中考基礎題.二、填空題(每題4分,共24分)13、【分析】先由數(shù)據(jù)的平均數(shù)公式求得x,再根據(jù)方差的公式計算即可.【詳解】∵數(shù)據(jù)1,2,x,4的平均數(shù)是2,∴,解得:,∴方差.故答案為:.【點睛】本題考查了平均數(shù)與方差的定義,平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù);方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).14、【分析】根據(jù)相似多邊形的性質列出比例式,計算即可.【詳解】∵矩形ABCD與矩形EABF相似,∴=,即=,解得,AD=,∴矩形ABCD的面積=AB?AD=,故答案為:.【點睛】本題考查了相似多邊形的性質,掌握相似多邊形的對應邊的比相等是解題的關鍵.15、k≤5【詳解】解:由題意得,42-4×1×(k-1)≥0,解之得k≤5.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當△>0時,一元二次方程有兩個不相等的實數(shù)根;當△=0時,一元二次方程有兩個相等的實數(shù)根;當△<0時,一元二次方程沒有實數(shù)根.16、3π【解析】試題分析:此題考查扇形面積的計算,熟記扇形面積公式,即可求解.根據(jù)扇形面積公式,計算這個扇形的面積為.考點:扇形面積的計算17、【分析】分別在Rt△ABC和Rt△ADC中用AC和的三角函數(shù)表示出AB和AD,進一步即可求出結果.【詳解】解:在Rt△ABC中,∵,∴,在Rt△ADC中,∵,∴,∴.故答案為:.【點睛】本題考查了三角函數(shù)的知識,屬于常考題型,熟練掌握正弦的定義是解題的關鍵.18、0【分析】將代入方程中,可求出m的兩個解,然后根據(jù)一元二次方程的定義即可判斷m可取的值.【詳解】解:將代入一元二次方程中,得解得:∵是一元二次方程∴解得故m=0故答案為:0.【點睛】此題考查的是一元二次方程的定義和解,掌握一元二次方程的二次項系數(shù)不為0和解的定義是解決此題的關鍵.三、解答題(共78分)19、(1)q=﹣x+14,其中2≤x≤10;(2)①2≤x≤4,②y=;(3)x=時取最大值,最大利潤百元.【分析】(1)根據(jù)表格數(shù)據(jù),設q與x的函數(shù)關系式為:q=kx+b,待定系數(shù)法即可求得;(2)①根據(jù)題意,p≤q,計算即可求得x的取值范圍;②根據(jù)銷售利潤=銷售量(售價-進價),列出廠家每天獲得的利潤(百元)與銷售價格的函數(shù)關系;(3)根據(jù)(2)中的條件分情況討論即可.【詳解】(1)由表格的數(shù)據(jù),設q與x的函數(shù)關系式為:q=kx+b根據(jù)表格的數(shù)據(jù)得,解得,故q與x的函數(shù)關系式為:q=﹣x+14,其中2≤x≤10(2)①當每天的半成品食材能全部售出時,有p≤q即x+1≤﹣x+14,解得x≤4又2≤x≤10,所以此時2≤x≤4②由①可知,當2≤x≤4時,y=(x﹣2)p=(x﹣2)(x+1)=x2+7x﹣16當4<x≤10時,y=(x﹣2)q﹣2(p﹣q)=(x﹣2)(﹣x+14)﹣2[x+1﹣(﹣x+14)]=﹣x2+13x﹣16即有y=(3)當2≤x≤4時,y=x2+7x﹣16的對稱軸為x==﹣7∴當2≤x≤4時,隨x的增大而增大∴x=4時有最大值,y=20當4<x≤10時y=﹣x2+13x﹣16=﹣(x﹣)2+,∵﹣1<0,>4∴x=時取最大值即此時y有最大利潤百元.【點睛】本題考查一次函數(shù)和二次函數(shù)實際應用中的利潤問題,屬綜合中檔題.20、(1)見解析;(2)△CPA∽△CAB,此時P(,);△BPA∽△BAC,此時P(,);(3)S(3,-2)是△GBD與△GBC公共的自相似點,見解析【分析】(1)利用:兩邊對應成比例且夾角相等,證明△APC∽△CAB即可;(2)分類討論:△CPA∽△CAB和△BPA∽△BAC,分別求得P點的坐標;(3)先求得點D的坐標,說明點G(5,)、S(3,-2)在直線AC:上,證得△ABC△SGB,再證得△GBS∽△GCB,說明點S是△GBC的自相似點;又證得△DBG△DSB,說明點S是△GBD的自相似點.從而說明S(3,-2)是△GBD與△GBC公共的自相似點.【詳解】(1)如圖,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故點P是△ABC的自相似點;(2)點P只能在BC上,①△CPA∽△CAB,如圖,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,過點P作PD∥y軸交軸于D,∴,,∴,,∴,,P點的坐標為(,)②△BPA∽△BAC,如圖,由前面獲得的數(shù)據(jù):AB,,∵△BPA∽△BAC,∴,∴,∴,過點P作PE∥y軸交軸于E,∴,∴,∴,,∴,P點的坐標為(,);(3)存在.當點G的坐標為(5,)時,△GBD與△GBC公共的自相似點為S(3,).理由如下:如圖:設直線AC的解析式為:,
∴,解得:,∴直線AC的解析式為:,過點D作DE⊥x軸于點E,
∵∠CBO+∠DBE=90,∠EDB+∠DBE=90,∴∠CBO=∠EDB,∴,∴,設BE=a,則DE=3a,∴OE=3-a,∴點D的坐標為(3-a,-3a),∵點D在直線AC上,∴,解得:,∴點D的坐標為(,);如下圖:當點G的坐標為(5,)時,△GBD與△GBC公共的自相似點為S(3,).直線AC的解析式為:,
∵,,∴點G、點S在直線AC上,過點G作GH⊥x軸于點H,∵,∴,由S(3,)、B(3,0)知BS⊥x軸,∴△AED、△ABS、△AHG為等腰直角三角形,∵D(,),S,G(,∴,,B,,,,,,,,在△ABC和△SGB中∵,,∴,∵∴∴△ABC△SGB∴∠SBG=∠BCA,又∠SGB=∠BGC,∴△GBS∽△GCB,∴點S是△GBC的自相似點;在△DBG和△DSB中,∵,,∴,且,∴△DBG△DSB;∴點S是△GBD的自相似點.∴S(3,)是△GBD與△GBC公共的自相似點.【點睛】本題主要考查了相似三角形的判定,涉及的知識有:平面內點的特征、待定系數(shù)法求直線的解析式、等腰直角三角形的判定和性質、勾股定理,讀懂題意,理清“自相似點”的概念是解題的關鍵.21、(1)y=x2+2x+1;(2)5;(3)M(,﹣)或(﹣,)【分析】(1)先求出點B坐標,再將點D,B代入拋物線的頂點式即可;(2)如圖1,過點C作CH⊥y軸于點H,先求出點F的坐標,點C的坐標,再求出直線CM的解析式,最后可求出兩個交點及交點間的距離;(3)設M(m,﹣m+1),如圖2,取PQ的中點N,連接MN,證點P,M,Q同在以PQ為直徑的圓上,所以∠PMQ=90°,利用勾股定理即可求出點M的坐標.【詳解】解:(1)在y=﹣x+1中,當x=0時,y=1,∴B(0,1),∵拋物線y=ax2+bx+c過點B,并且頂點D的坐標為(﹣2,﹣1),∴可設拋物線解析式為y=a(x+2)2﹣1,將點B(0,1)代入,得,a=,∴拋物線的解析式為:y=(x+2)2﹣1=x2+2x+1;(2)聯(lián)立,解得,或,∴F(﹣5,),∵點C是BF的中點,∴xC==﹣,yC==,∴C(﹣,),如圖1,過點C作CH⊥y軸于點H,則∠HCB+∠CBH=90°,又∵∠MCH+∠HCB=90°,∴∠CBH=∠MCH,又∠CHB=∠MHC=90°,∴△CHB∽△MHC,∴=,即=,解得,HM=5,∴OM=OH+MH=+5=,∴M(0,),設直線CM的解析式為y=kx+,將C(﹣,)代入,得,k=2,∴yCM=2x+,聯(lián)立2x+=x2+2x+1,解得,x1=,x2=﹣,∴P(,5+),Q(﹣,﹣5+),∴PQ==5;(3)∵點M在直線AB上,∴設M(m,﹣m+1),如圖2,取PQ的中點N,連接MN,∵PQ=2MN,∴NM=NP=NQ,∴點P,M,Q同在以PQ為直徑的圓上,∴∠PMQ=90°,∴MP2+MQ2=PQ2,∴+=(5)2,解得,m1=,m2=﹣,∴M(,﹣)或(﹣,).【點睛】本題考查了待定系數(shù)法求解析式,兩點間的距離,勾股定理等,解題關鍵是需要有較強的計算能力.22、(1)y=,A(﹣3,﹣1);(1)x<﹣3或0<x<1時,y1<y1【分析】(1)把點B的坐標代入y1,利用待定系數(shù)法求反比例函數(shù)解析式即可,把點A的坐標代入反比例函數(shù)解析式進行計算求出a的值,從而得到點A的坐標;(1)根據(jù)圖象,寫出一次函數(shù)圖象在反比例函數(shù)圖象下方的x的取值范圍即可.【詳解】(1)一次函數(shù)y1=k1x+b與反比例函數(shù)y1的圖象交于點B(1,3),∴3,∴k1=6,∴反比例函數(shù)的解析式為y,∵A(a,﹣1)在y的圖象上,∴﹣1,∴a=﹣3,∴點A的坐標為A(﹣3,﹣1);(1)根據(jù)圖象得:當x<﹣3或0<x<1時,y1<y1.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,根據(jù)點B的坐標求出反比例函數(shù)解析式是解答本題的關鍵.23、(1)x=2±;(2)x=或x=.【分析】(1)根據(jù)配方法即可求出答案.(2)根據(jù)因式分解法即可求出答案.【詳解】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x+1=2,∴(x﹣2)2=2,∴x=2±.(2)∵(2x﹣1)2=4(2x﹣1),∴(2x﹣1﹣4)(2x﹣1)=0,∴x=或x=.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知一元二次方程的解法.24、(1),;(2);(3).【分析】(1)將點A、B的坐標代入拋物線表達式,即可求解;
(2)作軸于K,軸于L,OD=3OE,則OL=3OK,DL=3KE,設點E的橫坐標為t,則點D的橫坐標為-3t,則點E、D的坐標分別為:(t,)、(-3t,-+3t+),即可求解;(3)設點的橫坐標為,可得PH=m2+m-,過作EF∥y軸交于點交軸于點,TE=PH+YE=m2+m-+2=(m+1)2,tan∠AHE=,tan∠PET=,而∠AHE+∠EPH=2α,故∠AHE=∠PET=∠EPH=α,PH=PQ?tanα,即m2+m-=(2m+2)×,解得:m=2-1,故YH=m+1=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)公司低成本管理制度
- 商務服務公司內部管理制度
- 客運公司標準化管理制度
- 家樂福銷售人員管理制度
- 寢室衛(wèi)生設施設備管理制度
- 小區(qū)通訊機房設備管理制度
- 山西煤礦采空區(qū)管理制度
- 工業(yè)車間凈化設備管理制度
- 幼兒園功能室設施設備管理制度
- 幼兒園師生信息管理制度
- 2025年甘肅電投集團公司招聘筆試參考題庫含答案解析
- 國家開放大學《Web開發(fā)基礎》形考任務實驗1-5參考答案
- 中外美術評析與欣賞智慧樹知到期末考試答案章節(jié)答案2024年湖南大學
- 華中科技大學官方信紙4
- 交通運輸企業(yè)安全生產隱患排查清單
- DB22∕T 2862-2018 林木種子園營建技術規(guī)程
- 化工進展稿件編輯、排版體例格式
- 部編版四年級語文下冊期末調研測試卷(江蘇南京江寧區(qū)2021春真卷)
- 外國美術史PPT現(xiàn)實主義
- 固體火箭發(fā)動機制造工藝
- 手術室醫(yī)院感染風險評估與采取措施
評論
0/150
提交評論