2022-2023學年衡水市滏陽中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2022-2023學年衡水市滏陽中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2022-2023學年衡水市滏陽中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2022-2023學年衡水市滏陽中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2022-2023學年衡水市滏陽中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,AD是△ABC的中線,點E在AD上,AD=4DE,連接BE并延長交AC于點F,則AF:FC的值是()A.3:2 B.4:3 C.2:1 D.2:32.下列事件中,是必然事件的是()A.擲一次骰子,向上一面的點數(shù)是6B.13個同學參加一個聚會,他們中至少有兩個同學的生日在同一個月C.射擊運動員射擊一次,命中靶心D.經(jīng)過有交通信號燈的路口,遇到紅燈3.一個盒子里有完全相同的三個小球,球上分別標上數(shù)字-2、1、4隨機摸出一個小球(不放回)其數(shù)字記為p,再隨機摸出另一個小球其數(shù)字記為q,則滿足關(guān)于x的方程有實數(shù)根的概率是()A. B. C. D.4.如圖,晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子()A.逐漸變短 B.先變短后變長C.先變長后變短 D.逐漸變長5.“線段,等邊三角形,圓,矩形,正六邊形”這五個圖形中,既是軸對稱圖形又是中心對稱圖形的個數(shù)有()A.5個B.4個C.3個D.2個6.如圖,已知點是第一象限內(nèi)橫坐標為2的一個定點,軸于點,交直線于點,若點是線段上的一個動點,,,點在線段上運動時,點不變,點隨之運動,當點從點運動到點時,則點運動的路徑長是()A. B. C.2 D.7.如圖,函數(shù)的圖象與軸的一個交點坐標為(3,0),則另一交點的橫坐標為()A.﹣4 B.﹣3 C.﹣2 D.﹣18.下列計算正確的是()A. B. C.÷ D.9.如圖,在平面直角坐標系中,點P在函數(shù)y=(x>0)的圖象上從左向右運動,PA∥y軸,交函數(shù)y=﹣(x>0)的圖象于點A,AB∥x軸交PO的延長線于點B,則△PAB的面積()A.逐漸變大 B.逐漸變小 C.等于定值16 D.等于定值2410.如果2是方程x2-3x+k=0的一個根,則常數(shù)k的值為()A.2 B.1 C.-1 D.-211.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表:X﹣1013y﹣33下列結(jié)論:(1)abc<0;(2)當x>1時,y的值隨x值的增大而減小;(3)16a+4b+c<0;(4)拋物線與坐標軸有兩個交點;(5)x=3是方程ax2+(b﹣1)x+c=0的一個根;其中正確的個數(shù)為()A.5個 B.4個 C.3個 D.2個12.現(xiàn)有兩組相同的牌,每組三張且大小一樣,三張牌的牌面數(shù)字分別是1、2、3,從每組牌中各摸出一張牌.兩張牌的牌面數(shù)字之和等于4的概率是()A. B. C. D.二、填空題(每題4分,共24分)13.若、是關(guān)于的一元二次方程的兩個根,且,則,,,的大小關(guān)系是_____________.14.如圖,四邊形ABCD是菱形,⊙O經(jīng)過點A、C、D,與BC相交于點E,連接AC、AE.若∠D=70°,則∠EAC的度數(shù)為____________.15.某游樂場新推出一個“極速飛車”的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度,其中斜坡軌道BC的坡度為,BC=米,CD=8米,∠D=36°,(其中A,B,C,D均在同一平面內(nèi))則垂直升降電梯AB的高度約為__________米.(精確到0.1米,參考數(shù)據(jù):)16.拋物線的對稱軸是________.17.某農(nóng)科所在相同條件下做玉米種子發(fā)芽實驗,結(jié)果如下:某位顧客購進這種玉米種子10千克,那么大約有_____千克種子能發(fā)芽.18.如圖1是一種廣場三聯(lián)漫步機,其側(cè)面示意圖,如圖2所示,其中,.①點到地面的高度是__________.②點到地面的高度是____________.三、解答題(共78分)19.(8分)閱讀下面材料,完成(1)-(3)題.數(shù)學課上,老師出示了這樣一道題:如圖,△ABC中,D為BC中點,且AD=AC,M為AD中點,連結(jié)CM并延長交AB于N.探究線段AN、MN、CN之間的數(shù)量關(guān)系,并證明.同學們經(jīng)過思考后,交流了自已的想法:小明:“通過觀察和度量,發(fā)現(xiàn)線段AN、AB之間存在某種數(shù)量關(guān)系.”小強:“通過倍長不同的中線,可以得到不同的結(jié)論,但都是正確的,大家就大膽的探究吧.”小偉:“通過構(gòu)造、證明相似三角形、全等三角形,就可以將問題解決.”......老師:“若其他條件不變,設(shè)AB=a,則可以用含a的式子表示出線段CM的長.”(1)探究線段AN、AB之間的數(shù)量關(guān)系,并證明;(2)探究線段AN、MN、CN之間的數(shù)量關(guān)系,并證明;(3)設(shè)AB=a,求線段CM的長(用含a的式子表示).20.(8分)等腰中,,作的外接圓⊙O.(1)如圖1,點為上一點(不與A、B重合),連接AD、CD、AO,記與的交點為.①設(shè),若,請用含與的式子表示;②當時,若,求的長;(2)如圖2,點為上一點(不與B、C重合),當BC=AB,AP=8時,設(shè),求為何值時,有最大值?并請直接寫出此時⊙O的半徑.21.(8分)當今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據(jù)以往經(jīng)驗:當銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.22.(10分)已知關(guān)于的方程.(1)求證:不論取何實數(shù),該方程都有兩個不相等的實數(shù)根;(2)若該方程的一個根為,求該方程的另一個根.23.(10分)解方程:(1)x2+3=4x(2)3x(x-3)=-424.(10分)如圖:△ABC與△DEF中,邊BC,EF在同一條直線上,AB∥DE,AC∥DF,且BF=CE,求證:AC=DF.25.(12分)解方程:26.小明準備進行如下操作實驗:把一根長為的鐵絲剪成兩段,并把每一段圍成一個正方形.(1)要使這兩個正方形的面積之和等于,小明該怎么剪?(2)小剛對小明說:“這兩個正方形的面積之和不可能等于.”小剛的說法對嗎?請說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【分析】過點D作DG∥AC,根據(jù)平行線分線段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值.【詳解】解:過點D作DG∥AC,與BF交于點G.

∵AD=4DE,

∴AE=3DE,

∵AD是△ABC的中線,∴∵DG∥AC∴,即AF=3DG,即FC=1DG,∴AF:FC=3DG:1DG=3:1.

故選:A.【點睛】本題考查了平行線分線段成比例定理,正確作出輔助線充分利用對應(yīng)線段成比例的性質(zhì)是解題的關(guān)鍵.2、B【分析】事先能肯定它一定會發(fā)生的事件稱為必然事件,即發(fā)生的概率是1的事件.【詳解】解:A.擲一次骰子,向上一面的點數(shù)是6,屬于隨機事件;B.13個同學參加一個聚會,他們中至少有兩個同學的生日在同一個月,屬于必然事件;C.射擊運動員射擊一次,命中靶心,屬于隨機事件;D.經(jīng)過有交通信號燈的路口,遇到紅燈,屬于隨機事件;故選B.【點睛】此題主要考查事件發(fā)生的概率,解題的關(guān)鍵是熟知必然事件的定義.3、A【詳解】解:列表如下:

-214-2---(1,-2)(4,-2)1(-2,1)---(4,1)4(-2,4)(1,4)---所有等可能的情況有6種,其中滿足關(guān)于x的方程x2+px+q=0有實數(shù)根,即滿足p2-4q≥0的情況有4種,則P(滿足方程的根)=故選:A.4、B【分析】小亮由A處徑直路燈下,他得影子由長變短,再從路燈下到B處,他的影子則由短變長.【詳解】晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子先變短,再變長.故選B.【點睛】本題考查了中心投影:由同一點(點光源)發(fā)出的光線形成的投影叫做中心投影.如物體在燈光的照射下形成的影子就是中心投影.5、B【解析】根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合線段、等邊三角形、圓、矩形、正六邊形的性質(zhì)求解.【詳解】∵在線段、等邊三角形、圓、矩形、正六邊形這五個圖形中,既是中心對稱圖形又是軸對稱圖形的有線段、圓、矩形、正六邊形,共4個.故答案為:B.【點睛】本題考查的知識點是中心對稱圖形與軸對稱圖形的概念,解題關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后原圖形重合.6、D【分析】根據(jù)題意利用相似三角形可以證明線段就是點運動的路徑(或軌跡),又利用∽求出線段的長度,即點B運動的路徑長.【詳解】解:由題意可知,,點在直線上,軸于點,則為頂角30度直角三角形,.如下圖所示,設(shè)動點在點(起點)時,點的位置為,動點在點(終點)時,點的位置為,連接,∵,∴又∵,∴(此處也可用30°角的)∴∽,且相似比為,∴現(xiàn)在來證明線段就是點運動的路徑(或軌跡).如圖所示,當點運動至上的任一點時,設(shè)其對應(yīng)的點為,連接,,∵,∴又∵,∴∴∽∴又∵∽∴∴∴點在線段上,即線段就是點運動的路徑(或軌跡).綜上所述,點運動的路徑(或軌跡)是線段,其長度為.故選:【點睛】本題考查坐標平面內(nèi)由相似關(guān)系確定的點的運動軌跡,難度很大.本題的要點有兩個:首先,確定點B的運動路徑是本題的核心,這要求考生有很好的空間想象能力和分析問題的能力;其次,由相似關(guān)系求出點B運動路徑的長度,可以大幅簡化計算,避免陷入坐標關(guān)系的復(fù)雜運算之中.7、D【分析】根據(jù)到函數(shù)對稱軸距離相等的兩個點所表示的函數(shù)值相等可求解.【詳解】根據(jù)題意可得:函數(shù)的對稱軸直線x=1,則函數(shù)圖像與x軸的另一個交點坐標為(-1,0).故橫坐標為-1,故選D考點:二次函數(shù)的性質(zhì)8、C【分析】根據(jù)二次根式的加減法對A、B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)完全平方公式對D進行判斷.【詳解】A、原式=2﹣,所以A選項錯誤;B、3與不能合并,所以B選項錯誤;C、原式==2,所以C選項正確;D、原式=3+4+4=7+4,所以D選項錯誤.故選:C.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.9、C【分析】根據(jù)反比例函數(shù)k的幾何意義得出S△POC=×2=1,S矩形ACOD=6,即可得出,從而得出,通過證得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【詳解】如圖,由題意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC?PC,S矩形ACOD=OC?AC,∴,∴,∴,∵AB∥軸,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面積等于定值1.故選:C.【點睛】本題考查了反比例函數(shù)的性質(zhì)以及矩形的面積的計算,利用相似三角形面積比等于相似比的平方是解決本題的關(guān)鍵.10、A【分析】把x=1代入已知方程列出關(guān)于k的新方程,通過解方程來求k的值.【詳解】解:∵1是一元二次方程x1-3x+k=0的一個根,

∴11-3×1+k=0,

解得,k=1.

故選:A.【點睛】本題考查的是一元二次方程的根即方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.11、C【解析】先根據(jù)表格中的數(shù)據(jù)大體畫出拋物線的圖象,進一步即可判斷a、b、c的符號,進而可判斷(1);由點(0,3)和(3,3)在拋物線上可求出拋物線的對稱軸,然后結(jié)合拋物線的開口方向并利用二次函數(shù)的性質(zhì)即可判斷(2);由(2)的結(jié)論可知:當x=4和x=﹣1時對應(yīng)的函數(shù)值相同,進而可判斷(3);根據(jù)畫出的拋物線的圖象即可判斷(4);由表中的數(shù)據(jù)可知:當x=3時,二次函數(shù)y=ax2+bx+c=3,進一步即可判斷(5),從而可得答案.【詳解】解:(1)畫出拋物線的草圖如圖所示:則易得:a<0,b>0,c>0,∴abc<0,故(1)正確;(2)由表格可知:點(0,3)和(3,3)在拋物線上,且此兩點關(guān)于拋物線的對稱軸對稱,∴拋物線的對稱軸為直線x=,因為a<0,所以,當x>時,y的值隨x值的增大而減小,故(2)錯誤;(3)∵拋物線的對稱軸為直線x=,∴當x=4和x=﹣1時對應(yīng)的函數(shù)值相同,∵當x=-1時,y<0,∴當x=4時,y<0,即16a+4b+c<0,故(3)正確;(4)由圖象可知,拋物線與x軸有兩個交點,與y軸有一個交點,故(4)錯誤;(5)由表中的數(shù)據(jù)可知:當x=3時,二次函數(shù)y=ax2+bx+c=3,∴x=3是方程ax2+(b﹣1)x+c=0的一個根,故(5)正確;綜上,結(jié)論正確的共有3個,故選:C.【點睛】本題考查了拋物線的圖象和性質(zhì)以及拋物線與一元二次方程的關(guān)系,根據(jù)表格中的數(shù)據(jù)大體畫出函數(shù)圖象、熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.12、B【分析】畫樹狀圖列出所有情況,看數(shù)字之和等于4的情況數(shù)占總情況數(shù)的多少即可.【詳解】畫樹狀圖得:則共有9種等可能的結(jié)果,其中兩張牌的牌面數(shù)字之和等于4的有3種結(jié)果,∴兩張牌的牌面數(shù)字之和等于4的概率為=,故選:B.【點睛】本題考查列表法和樹狀圖法,解題的關(guān)鍵是可以不重復(fù)不遺漏的列出所有可能的結(jié)果.二、填空題(每題4分,共24分)13、【分析】根據(jù)題意和二次函數(shù)性質(zhì),可以判斷出的大小關(guān)系,本題得以解決.【詳解】令,則該函數(shù)的圖象開口向上,

當時,,

當時,

即,

∵是關(guān)于的方程的兩根,且,

∴,

故答案為:.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.14、【分析】根據(jù)菱形的性質(zhì)求∠ACD的度數(shù),根據(jù)圓內(nèi)接四邊形的性質(zhì)求∠AEC的度數(shù),由三角形的內(nèi)角和求解.【詳解】解:∵四邊形ABCD是菱形,∴AD∥BC,AD=DC,∴∠DAC=∠ACB,∠DAC=∠DCA∵∠D=70°,∴∠DAC=,∴∠ACB=55°,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案為:15°【點睛】本題考查了菱形的性質(zhì),三角形的內(nèi)角和,圓內(nèi)接四邊形的性質(zhì),熟練掌握菱形的性質(zhì)和圓的性質(zhì)是解答此題的關(guān)鍵.15、11.2【分析】延長AB和DC相交于點E,根據(jù)勾股定理,可得CE,BE的長,根據(jù)正切函數(shù),可得AE的長,再根據(jù)線段的和差,可得答案.【詳解】解:如圖,延長AB和DC相交于點E,

由斜坡軌道BC的坡度為i=1:1,得

BE:CE=1:1.

設(shè)BE=x米,CE=1x米,

在Rt△BCE中,由勾股定理,得

BE1+CE1=BC1,

即x1+(1x)1=(11)1,

解得x=11,

即BE=11米,CE=12米,

∴DE=DC+CE=8+12=31(米),

由tan36°≈0.73,得tanD=≈0.73,

∴AE≈0.73×31=13.36(米).

∴AB=AE-BE=13.36-11=11.36≈11.2(米).

故答案為:11.2.【點睛】本題考查了解直角三角形的應(yīng)用,作出輔助線構(gòu)造直角三角形,利用勾股定理得出CE,BE的長度是解題關(guān)鍵.16、【分析】根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸是直線x=?計算.【詳解】拋物線y=2x2+24x?7的對稱軸是:x=?=?1,故答案為:x=?1.【點睛】本題考查的是二次函數(shù)的性質(zhì),掌握二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸是直線x=?是解題的關(guān)鍵.17、1.1【分析】觀察圖中的頻率穩(wěn)定在哪個數(shù)值附近,由此即可求出作物種子的概率.【詳解】解:∵大量重復(fù)試驗發(fā)芽率逐漸穩(wěn)定在0.11左右,∴10kg種子中能發(fā)芽的種子的質(zhì)量是:10×0.11=1.1(kg)故答案為:1.1.【點睛】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.18、【分析】①過點A作,垂足為F,得出,BF=40,利用勾股定理可得出AF的長,即A到地面的高度②過點D作,垂足為H,可得出,,可求出AH的長度,從而得出D到底面的高度為AH+AF.【詳解】解:過點A作,垂足為F,過點D作,垂足為H,如下圖:①∵,∴,BF=40cm∴∴A到地面的高度為:.②∵∴,∴,∴∴AH=10,∴D到底面的高度為AH+AF=(10+)cm.【點睛】本題考查的知識點是等腰三角形的性質(zhì)以及相似三角形的判定與性質(zhì),解題的關(guān)鍵是弄清題意,結(jié)合題目作出輔助線,再利用相似三角形性質(zhì)求解.三、解答題(共78分)19、(1)(2)或,證明見解析(3)【分析】(1)過B做BQ∥NC交AD延長線于Q,構(gòu)造出全等三角形△BDQ≌△CDM(ASA)、相似三角形△ANM∽△ABQ,再利用全等和相似的性質(zhì)即可得出結(jié)論;(2)延長AD至H,使AD=DH,連接CH,可得△ABD≌△HCD(SAS),進一步可證得,得到,然后證明,即可得到結(jié)論:;延長CM至Q,使QM=CM,連接AQ,延長至,使可得、四邊形為平行四邊形,進一步可證得,即可得到結(jié)論;(3)在(1)、(2)的基礎(chǔ)之上,用含的式子表示出、,從而得出.【詳解】(1)過B做BQ∥NC交AD延長線于Q,如圖:∵D為BC中點易得△BDQ≌△CDM(ASA)∴DQ=DM,∵M為AD中點,∴AM=DM=DQ,∵BQ∥NC,∴△ANM∽△ABQ,∴,∴;(2)①結(jié)論:,證明:延長AD至H,使AD=DH,連接CH,如圖:易得△ABD≌△HCD(SAS),∴∠H=∠BAH,∴AB∥HC,設(shè)AM=x,則AD=AC=2x,AH=4x,∴,,∴;∴,,∴,∴,∴,∵,∴,∴,∴;②結(jié)論:;證明:延長至,使,連接,延長至,使,如圖:則,則四邊形為平行四邊形,∴,,,,,,∴,∴,∴,∴,,∴,∴;(3)由(1)得,,∴,由(2)①得,∵∴,∴,∴,∵,∴,∴,∴.【點睛】本題考查了全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì),合理的添加輔助線是解題的關(guān)鍵.20、(1)①;②;(2)PB=5時,S有最大值,此時⊙O的半徑是.【分析】(1)①連接BO、CO,利用SSS可證明△ABO≌△ACO,可得∠BAO=∠CAO=y,利用等腰三角形的性質(zhì)及三角形內(nèi)角和定理可用y表示出∠ABC,由圓周角定理可得∠DCB=∠DAB=x,根據(jù)即可得答案;②過點作于點,根據(jù)垂徑定理可得AF的長,利用勾股定理可求出OF的長,由(1)可得,由AB⊥CD可得n=90°,即可證明y=x,根據(jù)AB⊥CD,OF⊥AC可證明△AED∽△AFO,設(shè)DE=a,根據(jù)相似三角形的性質(zhì)可,由∠D=∠B,∠AED=∠CEB=90°可證明△AED∽△CEB,設(shè),根據(jù)相似三角形的性質(zhì)可得,根據(jù)線段的和差關(guān)系和勾股定理列方程組可求出a、b的值,根據(jù)△AED∽△AFO即可求出AD的值;(2)延長到,使得,過點B作BD⊥AP于D,BE⊥CP,交CP延長線于E,連接OA,作OF⊥AB于F,根據(jù)BC=AB可得三角形ABC是等邊三角形,根據(jù)圓周角定理可得∠APM=60°,即可證明△APM是等邊三角形,利用角的和差關(guān)系可得∠BAP=∠CAM,利用SAS可證明△BAP≌△CPM,可得BP=CM,即可得出PB+PC=AP,設(shè),則,利用∠APB和∠BPE的正弦可用x表示出BD、BE的長,根據(jù)可得S與x的關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)即可求出S取最大值時x的值,利用∠BPA的余弦及勾股定理可求出AB的長,根據(jù)等邊三角形的性質(zhì)及垂徑定理求出OA的長即可得答案.【詳解】(1)①連接BO,CO,∵,且為公共邊,∴,∴,∴,∴∵,∵,∴∴.②過點作于點,∴,∴,∵,∴,∴,∵,∴,∴△AED∽△AFO,∴=,即,設(shè),則∵,∴△AED∽△CEB,∴,即設(shè),則,∴解得:或,∵a>0,b>0,∴,即DE=,∵△AED∽△AFO,∴,∴AD==3=.(2)延長到,使得,過點B作BD⊥AP于D,BE⊥CP,交CP延長線于E,連接OA,作OF⊥AB于F,∵BC=AB,AB=AC,∴是等邊三角形,∴,∴,∴是等邊三角形,∴,∵∠BAP+∠PAC=∠CAM+∠PAC=60°,∴在△BAP和△CAM中,,∴,∴,∴設(shè),則,∵∠APB=∠ACB=60°,∠APM=60°,∴∠BPE=60°,∴BE=PB·sin60°=,PD=PB·sin60°=,∵,∴S=PC·BE+×AP·BD=,∴當時,即PB=5時,S有最大值,∴BD==,PD=PB·cos60°=,∴AD=AP-PD=,∴AB==7,∵△ABC是等邊三角形,O為△ABC的外接圓圓心,∴∠OAF=30°,AF=AB=,∴OA==.∴此時的半徑是.【點睛】本題考查圓周角定理、相似三角形的判定與性質(zhì)、垂徑定理、等邊三角形的判定與性質(zhì)、求二次函數(shù)的最值及解直角三角形,綜合性比較強,熟練掌握相關(guān)的性質(zhì)及定理是解題關(guān)鍵.21、(1);(1).【解析】(1)根據(jù)題意列函數(shù)關(guān)系式即可;

(1)設(shè)每天扣除捐贈后可獲得利潤為w元.根據(jù)題意得到w=(x-10-a)(-10x+500)=-10x1+(10a+700)x-500a-10000(30≤x≤38)求得對稱軸為x=35+a,且0<a≤6,則30<35+a≤38,則當時,取得最大值,解方程得到a1=1,a1=58,于是得到a=1.【詳解】解:(1)根據(jù)題意得,;(1)設(shè)每天扣除捐贈后可獲得利潤為元.對稱軸為x=35+a,且0<a≤6,則30<35+a≤38,則當時,取得最大值,∴∴(不合題意舍去),∴.【點睛】本題考查了二次函數(shù)的應(yīng)用,難度較大,最大銷售利潤的問題常利用函數(shù)的增減性來解答,正確的理解題意,確定變量,建立函數(shù)模型.22、(1)證明見解析;(2)另一根為-2.【分析】(1)寫出根的判別式,配方后得到完全平方式,進行解答;

(2)將代入方程得到的值,再根據(jù)根與系數(shù)的關(guān)系求出另一根.【詳解】(1)∵,,,∴∴不論取何實數(shù),該方程都有兩個不相等的實數(shù)根;(2)將代入方程得,,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論