江蘇省如東中學、栟茶中學2022-2023學年數學高三上期末達標檢測模擬試題含解析_第1頁
江蘇省如東中學、栟茶中學2022-2023學年數學高三上期末達標檢測模擬試題含解析_第2頁
江蘇省如東中學、栟茶中學2022-2023學年數學高三上期末達標檢測模擬試題含解析_第3頁
江蘇省如東中學、栟茶中學2022-2023學年數學高三上期末達標檢測模擬試題含解析_第4頁
江蘇省如東中學、栟茶中學2022-2023學年數學高三上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.902.已知函數是上的偶函數,是的奇函數,且,則的值為()A. B. C. D.3.已知函數的導函數為,記,,…,N.若,則()A. B. C. D.4.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知集合,則()A. B.C. D.6.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.7.函數的部分圖像大致為()A. B.C. D.8.公元前世紀,古希臘哲學家芝諾發表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜的倍.當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規律,若阿基里斯和烏龜的距離恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米9.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,的最大值是()A.8 B.9 C.10 D.1110.已知等差數列中,若,則此數列中一定為0的是()A. B. C. D.11.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件12.設實數、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.14二、填空題:本題共4小題,每小題5分,共20分。13.某校初三年級共有名女生,為了了解初三女生分鐘“仰臥起坐”項目訓練情況,統計了所有女生分鐘“仰臥起坐”測試數據(單位:個),并繪制了如下頻率分布直方圖,則分鐘至少能做到個仰臥起坐的初三女生有_____________個.14.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.15.在中,已知是的中點,且,點滿足,則的取值范圍是_______.16.已知實數,對任意,有,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知()過點,且當時,函數取得最大值1.(1)將函數的圖象向右平移個單位得到函數,求函數的表達式;(2)在(1)的條件下,函數,求在上的值域.18.(12分)表示,中的最大值,如,己知函數,.(1)設,求函數在上的零點個數;(2)試探討是否存在實數,使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.19.(12分)我們稱n()元有序實數組(,,…,)為n維向量,為該向量的范數.已知n維向量,其中,,2,…,n.記范數為奇數的n維向量的個數為,這個向量的范數之和為.(1)求和的值;(2)當n為偶數時,求,(用n表示).20.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.21.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.22.(10分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標準方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.2、B【解析】

根據函數的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數,,而函數是上的偶函數,,,故為周期函數,且周期為故選:B【點睛】本題主要考查了函數的奇偶性,函數的周期性的應用,屬于基礎題.3、D【解析】

通過計算,可得,最后計算可得結果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導數的計算以及不完全歸納法的應用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.4、D【解析】

根據面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.5、C【解析】

由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數軸求解.注意端點處是實心圓還是空心圓.6、D【解析】

三個單位的人數可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數可能為2,2,1或3,1,1;基本事件總數有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.7、A【解析】

根據函數解析式,可知的定義域為,通過定義法判斷函數的奇偶性,得出,則為偶函數,可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數,圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數解析式識別函數圖象,利用函數的奇偶性和特殊值法進行排除.8、D【解析】

根據題意,是一個等比數列模型,設,由,解得,再求和.【詳解】根據題意,這是一個等比數列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數列的實際應用,還考查了建模解模的能力,屬于中檔題.9、B【解析】

根據題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數列,∴.∵是以1為首項,2為公比的等比數列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數列,等比數列,f分組求和,意在考查學生對于數列公式方法的靈活運用.10、A【解析】

將已知條件轉化為的形式,由此確定數列為的項.【詳解】由于等差數列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數列的基本量計算,屬于基礎題.11、C【解析】

根據線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據線面平行的性質定理,可得;若,根據線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.12、D【解析】

做出滿足條件的可行域,根據圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據圖象,當目標函數過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區域,利用數形結合求線性目標函數的最值,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據數據先求出,再求出分鐘至少能做到個仰臥起坐的初三女生人數即可.【詳解】解:,.則分鐘至少能做到個仰臥起坐的初三女生人數為.故答案為:.【點睛】本題主要考查頻率分布直方圖,屬于基礎題.14、【解析】

先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.15、【解析】

由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據函數知識求出范圍.【詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據余弦定理可得,解得,由,解得.綜上,故答案為:.【點睛】本題主要考查學中點公式的向量形式和數量積的定義的應用,以及余弦定理的應用,涉及到函數思想和分類討論思想的應用,解題關鍵是建立函數關系式,屬于中檔題.16、-1【解析】

由二項式定理及展開式系數的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數的求法,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

試題分析:(1)由題意可得函數f(x)的解析式為,則.(2)整理函數h(x)的解析式可得:,結合函數的定義域可得函數的值域為.試題解析:(1)由函數取得最大值1,可得,函數過得,,∵,∴,.(2),,,值域為.18、(1)個;(1)存在,.【解析】試題分析:(1)設,對其求導,及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構造,通過求導得到最值,得到滿足條件的的范圍.試題解析:(1)設,.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設,結合與在上圖象可知,這兩個函數的圖象在上有兩個交點,即在上零點的個數為1...........................5分(或由方程在上有兩根可得)(1)假設存在實數,使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設,令,得遞增;令,得遞減,∴,當即時,,∴,∵,∴4.故當時,對恒成立,.......................8分當即時,在上遞減,∴.∵,∴,故當時,對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實數,使得對恒成立,且的取值范圍為................................................11分考點:導數應用.【思路點睛】本題考查了函數恒成立問題;利用導數來判斷函數的單調性,進一步求最值;屬于難題.本題考查函數導數與單調性.確定零點的個數問題:可利用數形結合的辦法判斷交點個數,如果函數較為復雜,可結合導數知識確定極值點和單調區間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉化為求函數的值域問題處理.恒成立問題以及可轉化為恒成立問題的問題,往往可利用參變分離的方法,轉化為求函數最值處理.也可構造新函數然后利用導數來求解.注意利用數形結合的數學思想方法.19、(1),.(2),【解析】

(1)利用枚舉法將范數為奇數的二元有序實數對都寫出來,再做和;(2)用組合數表示和,再由公式或將組合數進行化簡,得出最終結果.【詳解】解:(1)范數為奇數的二元有序實數對有:,,,,它們的范數依次為1,1,1,1,故,.(2)當n為偶數時,在向量的n個坐標中,要使得范數為奇數,則0的個數一定是奇數,所以可按照含0個數為:1,3,…,進行討論:的n個坐標中含1個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含3個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含個0,其余坐標為1或,共有個,每個的范數為1;所以,.因為,①,②得,,所以.解法1:因為,所以..解法2:得,.又因為,所以.【點睛】本題考查了數列和組合,是一道較難的綜合題.20、(1)見解析;(2)【解析】

(1)由平面平面的性質定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養和向量法的合理運用,屬于中檔題.21、(1)證明見解析;(2)存在點是線段的中點,使得直線與平面所成角的正弦值為.【解析】

(1)在直角梯形中,根據,,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據平面平面,利用面面垂直的性質定理證明.(2)建立空間直角坐標系:假設在上存在一點使直線與平面所成角的正弦值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論