2025屆山東省濟寧市曲阜市九上數學期末學業水平測試模擬試題含解析_第1頁
2025屆山東省濟寧市曲阜市九上數學期末學業水平測試模擬試題含解析_第2頁
2025屆山東省濟寧市曲阜市九上數學期末學業水平測試模擬試題含解析_第3頁
2025屆山東省濟寧市曲阜市九上數學期末學業水平測試模擬試題含解析_第4頁
2025屆山東省濟寧市曲阜市九上數學期末學業水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省濟寧市曲阜市九上數學期末學業水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在△ABC中,DE∥BC,,BC=12,則DE的長是()A.3 B.4 C.5 D.62.如果用線段a、b、c,求作線段x,使,那么下列作圖正確的是()A. B.C. D.3.圓錐的底面半徑是,母線為,則它的側面積是()A. B. C. D.4.一個盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.5.10件產品中有2件次品,從中任意抽取1件,恰好抽到次品的概率是()A. B. C. D.6.某射擊運動員在訓練中射擊了10次,成績如圖所示:下列結論不正確的是()A.眾數是8 B.中位數是8 C.平均數是8.2 D.方差是1.27.如圖,在正方形網格中,已知的三個頂點均在格點上,則的正切值為()A. B. C. D.8.某次聚會,每兩個參加聚會的人都互相握了一次手,有人統計一共握了10次手.求這次聚會的人數是多少?設這次聚會共有人,可列出的方程為()A. B. C. D.9.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉后,能與△ACP′重合,如果AP=3cm,那么PP′的長為()A. B. C. D.10.如圖,點的坐標為,點,分別在軸,軸的正半軸上運動,且,下列結論:①②當時四邊形是正方形③四邊形的面積和周長都是定值④連接,,則,其中正確的有()A.①② B.①②③ C.①②④ D.①②③④11.剪紙是中國特有的民間藝術.在如圖所示的四個剪紙圖案中.既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.12.如圖所示,線段與交于點,下列條件中能判定的是()A.,,, B.,,,C.,,, D.,,,二、填空題(每題4分,共24分)13.如圖所示,在中,、相交于點,點是的中點,聯結并延長交于點,如果的面積是4,那么的面積是______.14.小明向如圖所示的區域內投擲飛鏢,陰影部分時的內切圓,已知,,,如果小明投擲飛鏢一次,則飛鏢落在陰影部分的概率為____________.15.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為__________米.16.如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內切圓,依此類推,圖10中有10個直角三角形的內切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=.17.若兩個相似三角形的周長比為2:3,則它們的面積比是_________.18.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為12m,那么這棟建筑物的高度為_____m.三、解答題(共78分)19.(8分)如圖⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.點M由點B出發沿BA方向向點A勻速運動,同時點N由點A出發沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接MN,設運動時間為t(s)﹙0<t<4﹚,解答下列問題:⑴設△AMN的面積為S,求S與t之間的函數關系式,并求出S的最大值;⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當四邊形MNPC為菱形時,求t的值;⑶當t的值為,△AMN是等腰三角形.20.(8分)如圖,是規格為8×8的正方形網格,請在所給的網格中按下列要求操作.(1)在網格中建立平面直角坐標系,使點的坐標為,點的坐標為.(2)在第二象限內的格點上畫一點,使點與線段組成一個以為底的等腰三角形,且腰長是無理數.求點的坐標及的周長(結果保留根號).(3)將繞點順時針旋轉90°后得到,以點為位似中心將放大,使放大前后的位似比為1:2,畫出放大后的的圖形.21.(8分)如圖,為的直徑,為上一點,,延長至點,使得,過點作,垂足在的延長線上,連接.(1)求證:是的切線;(2)當時,求圖中陰影部分的面積.22.(10分)先化簡,再求值:,其中a=3,b=﹣1.23.(10分)如圖,在平行四邊形ABCD中,點A、B、C的坐標分別是(1,0)、(3,1)、(3,3),雙曲線y=(k≠0,x>0)過點D.(1)寫出D點坐標;(2)求雙曲線的解析式;(3)作直線AC交y軸于點E,連結DE,求△CDE的面積.24.(10分)如圖,是的直徑,半徑OC⊥弦AB,點為垂足,連、.(1)若,求的度數;(2)若,,求的半徑.25.(12分)如圖,一次函數y=x+4的圖象與反比例函數y=(k為常數且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C(1)求此反比例函數的表達式;(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.26.如圖,在中,是上的高..求證:.

參考答案一、選擇題(每題4分,共48分)1、B【解析】試題解析:在△ABC中,DE∥BC,故選B.2、B【分析】利用比例式a:b=c:x,與已知圖形作對比,可以得出結論.【詳解】A、a:b=x:c與已知a:b=c:x不符合,故選項A不正確;B、a:b=c:x與已知a:b=c:x符合,故選項B正確;C、a:c=x:b與已知a:b=c:x不符合,故選項C不正確;D、a:x=b:c與已知a:b=c:x不符合,故選項D不正確;故選:B.【點睛】本題考查了平行線分線段成比例定理、復雜作圖,熟練掌握平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例.3、A【分析】根據圓錐的側面積=底面周長×母線長計算.【詳解】圓錐的側面面積=×6×5=15cm1.故選:A.【點睛】本題考查圓錐的側面積=底面周長×母線長,解題的關鍵是熟知公式的運用.4、C【分析】畫樹狀圖求出共有12種等可能結果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結果及符合題意的結果是本題的解題關鍵.5、D【分析】由于10件產品中有2件次品,所以從10件產品中任意抽取1件,抽中次品的概率是.【詳解】解:.故選:D.【點睛】本題考查的知識點是用概率公式求事件的概率,根據題目找出全部情況的總數以及符合條件的情況數目是解此題的關鍵.6、D【分析】首先根據圖形數出各環數出現的次數,在進行計算眾數、中位數、平均數、方差.【詳解】根據圖表可得10環的2次,9環的2次,8環的3次,7環的2次,6環的1次.所以可得眾數是8,中位數是8,平均數是方差是故選D【點睛】本題主要考查統計的基本知識,關鍵在于眾數、中位數、平均數和方差的概念.特別是方差的公式.7、D【分析】延長交網格于,連接,得直角三角形ACD,由勾股定理得出、,由三角函數定義即可得出答案.【詳解】解:延長交網格于,連接,如圖所示:則,,,的正切值;故選:D.【點睛】本題考查了解直角三角形以及勾股定理的運用;熟練掌握勾股定理,構造直角三角形是解題的關鍵.8、D【分析】每個人都要和他自己以外的人握手一次,但兩個人之間只握手一次,所以等量關系為×聚會人數×(聚會人數-1)=總握手次數,把相關數值代入即可.【詳解】解:設參加這次聚會的同學共有x人,由題意得:,故選:D.【點睛】此題主要考查了一元二次方程的應用,正確理解題意,找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.9、D【分析】由題意易證,則有,進而可得,最后根據勾股定理可求解.【詳解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵將△ABP繞點A逆時針旋轉后,能與△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故選D.【點睛】本題主要考查旋轉的性質及等腰直角三角形的性質與判定,熟練掌握旋轉的性質及等腰直角三角形的性質與判定是解題的關鍵.10、A【分析】過P作PM⊥y軸于M,PN⊥x軸于N,易得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證得△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N,

∵P(1,1),

∴PN=PM=1.

∵x軸⊥y軸,

∴∠MON=∠PNO=∠PMO=90°,則四邊形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPN=∠APB=90°,

∴∠MPA=∠NPB.

在△MPA≌△NPB中,,

∴△MPA≌△NPB,

∴PA=PB,故①正確.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

當OA=OB,即OA=OB=1時,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.

∵△MPA≌△NPB,

∴.

∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.

∵∠AOB+∠APB=180°,

∴點A、O、B、P共圓,且AB為直徑,所以AB≥OP,故④錯誤.

故選:A.【點睛】本題考查了全等三角形的性質和判定,三角形的內角和定理,坐標與圖形性質,正方形的性質的應用,圓周角定理,關鍵是推出AM=BN和推出OA+OB=OM+ON11、C【解析】根據軸對稱圖形的定義沿一條直線對折后,直線兩旁部分完全重合的圖形是軸對稱圖形,以及中心對稱圖形的定義分別判斷即可得出答案.【詳解】A.此圖形沿一條直線對折后不能夠完全重合,∴此圖形不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B.此圖形沿一條直線對折后能夠完全重合,∴此圖形不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤。C.此圖形沿一條直線對折后能夠完全重合,∴此圖形是軸對稱圖形,旋轉180°能與原圖形重合,是中心對稱圖形,故此選項正確;D.此圖形沿一條直線對折后能夠完全重合,旋轉180°不能與原圖形重合,∴此圖形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤。故選C【點睛】此題考查軸對稱圖形和中心對稱圖形,難度不大12、C【解析】根據平行線分線段成比例的推論:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊,逐項判斷即可得答案.【詳解】A.∵∴不能判定,故本選項不符合題意;B.無法判斷,則不能判定,故本選項不符合題意;C.∵,,,∴∴故本選項符合題意;D.∵∴不能判定,故本選項不符合題意;故選C.【點睛】本題考查平行線分線段成比例的推論,熟練掌握此推論判定平行是解題的關鍵.二、填空題(每題4分,共24分)13、36【分析】首先證明△AFE∽△CBE,然后利用對應邊成比例,E為OA的中點,求出AE:EC=1:3,即可得出.【詳解】在平行四邊形ABCD中,AD∥BC,

則△AFE∽△CBE,

∴,

∵O為對角線的交點,

∴OA=OC,

又∵E為OA的中點,

∴AE=AC,

則AE:EC=1:3,

∴AF:BC=1:3,

∴即∴=36故答案為:36【點睛】本題考查了相似三角形的判定與性質以及平行四邊形的性質,難度適中,解答本題的關鍵是根據平行證明△DFE∽△BAE,然后根據對應邊成比例求值.14、【分析】利用幾何概率等于陰影部分的面積與三角形的面積之比即可得出答案.【詳解】,,,∴是直角三角形,設圓的半徑為r,利用三角形的面積有即解得∴陰影部分的面積為∵三角形的面積為∴飛鏢落在陰影部分的概率為故答案為:.【點睛】本題主要考查幾何概率,掌握幾何概率的求法是解題的關鍵.15、【解析】設圓心為O,半徑長為r米,根據垂徑定理可得AD=BD=6,則OD=(r-4),然后利用勾股定理在Rt△AOD中求解即可.【詳解】解:設圓心為O,半徑長為r米,可知AD=BD=6米,OD=(r-4)米在Rt△AOD中,根據勾股定理得:,解得r=6.5米,即半徑長為6.5米.故答案為6.5【點睛】本題考查了垂徑定理的應用,要熟練掌握勾股定理的性質,能夠運用到實際生活當中.16、π.【解析】圖1,過點O做OE⊥AC,OF⊥BC,垂足為E.

F,則∠OEC=∠OFC=90°∵∠C=90°∴四邊形OECF為矩形∵OE=OF∴矩形OECF為正方形設圓O的半徑為r,則OE=OF=r,AD=AE=3?r,BD=4?r∴3?r+4?r=5,r==1∴S1=π×12=π圖2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD=,BD=5?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴S1+S2=π×()2+π×()2=π.圖3,由S△CDB=××=×4×MD∴MD=,由勾股定理得:CM=,MB=4?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴⊙F的半徑=,∴S1+S2+S3=π×()2+π×()2+π×()2=π17、4∶1【解析】試題解析:∵兩個相似三角形的周長比為2:3,∴這兩個相似三角形的相似比為2:3,∴它們的面積比是4:1.考點:相似三角形的性質.18、1.【解析】試題解析:設這棟建筑物的高度為由題意得解得:即這棟建筑物的高度為故答案為1.三、解答題(共78分)19、(1),;(2)t=;(3)或或【分析】(1)如圖過點M作MD⊥AC于點D,利用相似三角形的性質求出MD即可解決問題;(2)連接PM,交AC于D,,當四邊形MNPC為菱形時,ND=,即可用t表示AD,再結合第一問的相似可以用另外一個含t式子表示AD,列方程計算即可;(3)分別用t表示出AP、AQ、PQ,再分三種情況討論:①當AQ=AP②當PQ=AQ③當PQ=AP,再分別計算即可.【詳解】解:⑴過點M作MD⊥AC于點D.∵,;∴AB=10cm.BM=AN=2t∴AM=10-2t.∵△ADM∽△ACB∴即∴∴又∴S的最大值是;⑵連接PM,交AC于D,∵四邊形MNPC是菱形,則MP⊥NC,ND=CD∵CN=8-2t∴ND=4-t∴AD=2t+4-t=t+4由⑴知AD=∴=t+4∴t=;(3)由(1)知,PE=﹣t+3,與(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①當AQ=AP,即t=5﹣t時,解得:t1=;②當PQ=AQ,即=t時,解得:t2=,t3=5;③當PQ=AP,即=5﹣t時,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合題意,舍去,∴當t為s或s或s時,△APQ是等腰三角形.【點睛】此題主要考查了相似形綜合,用到的知識點是相似三角形的判定與性質、勾股定理、三角形的面積公式以及二次函數的最值問題,關鍵是根據題意做出輔助線,利用數形結合思想進行解答.20、(1)圖見解析;(2),周長為;(3)圖見解析.【分析】(1)根據平面直角坐標系點的特征作圖即可得出答案;(2)根據等腰三角形的定義計算即可得出答案;(3)根據旋轉和位似的性質即可得出答案.【詳解】解:(1)如圖所示:(2)∵,∴∴周長為;(3)如圖所示,即為所求.【點睛】本題考查的是尺規作圖,涉及到了兩點間的距離公式以及位似的相關性質,需要熟練掌握.21、(1)詳見解析;(2).【分析】(1)連接OB,欲證是的切線,即要證到∠OBE=90°,而根據等腰三角形的性質可得到.再根據直角三角形的性質可得到,從而得到,從而得到,然后根據切線的判定方法得出結論即可.(2)先根據已知條件求出圓的半徑,再根據扇形的面積計算公式計算出扇形OBC的面積,再算出三角形OBC的面積,則陰影部分的面積可求.【詳解】(1)證明:如圖,連接∵,,∴.∵,,∴在中,.∴∴在中,.∴,即.又∵為圓上一點,∴是圓的切線.(2)解:當時,.∵為圓的直徑,∴.又∵,∴.在中,,即,解得.∴,∴【點睛】本題考查了切線的判定方法和弓形面積的計算方法,正確作出輔助線是解題的關鍵.22、,.【分析】根據分式混合運算法則化簡出最簡結果,把a、b的值代入求值即可.【詳解】原式=·﹣=﹣=﹣===.當a=3,b=﹣1時,原式===.【點睛】本題考查分式的混合運算——化簡求值,熟練掌握分式的混合運算法則是解題關鍵.23、(1)點D的坐標是(1,2);(2)雙曲線的解析式是:y=;(1)△CDE的面積是1.【分析】(1)根據平行四邊形對邊相等的性質,將線段長度轉化為點的坐標即可;(2)求出點的坐標后代入反比例函數解析式求解即可;(1)觀察圖形,可用割補法將分成與兩部分,以為底,分別以到的距離和到的距離為高求解即可.【詳解】解:(1)∵在平行四邊形ABCD中,點A、B、C的坐標分別是(1,0)、(1,1)、(1,1),∴點D的坐標是(1,2),(2)∵雙曲線y=(k≠0,x>0)過點D(1,2),∴2=,得k=2,即雙曲線的解析式是:y=;(1)∵直線AC交y軸于點E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論