蘇州工業園區2023-2024學年中考數學全真模擬試卷含解析_第1頁
蘇州工業園區2023-2024學年中考數學全真模擬試卷含解析_第2頁
蘇州工業園區2023-2024學年中考數學全真模擬試卷含解析_第3頁
蘇州工業園區2023-2024學年中考數學全真模擬試卷含解析_第4頁
蘇州工業園區2023-2024學年中考數學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

蘇州工業園區2023-2024學年中考數學全真模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是()A. B. C. D.2.下列圖標中,是中心對稱圖形的是()A. B.C. D.3.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°4.已知y關于x的函數圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<25.下列計算中正確的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x6.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數關系的是()A. B. C. D.7.如圖,在平面直角坐標系xOy中,點C,B,E在y軸上,Rt△ABC經過變化得到Rt△EDO,若點B的坐標為(0,1),OD=2,則這種變化可以是()A.△ABC繞點C順時針旋轉90°,再向下平移5個單位長度B.△ABC繞點C逆時針旋轉90°,再向下平移5個單位長度C.△ABC繞點O順時針旋轉90°,再向左平移3個單位長度D.△ABC繞點O逆時針旋轉90°,再向右平移1個單位長度8.7的相反數是()A.7 B.-7 C. D.-9.如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結論個數為()A.4 B.3 C.2 D.110.已知拋物線y=x2+3向左平移2個單位,那么平移后的拋物線表達式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+511.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數是()A.40° B.65° C.70° D.80°12.關于的不等式的解集如圖所示,則的取值是A.0 B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示,輪船在處觀測燈塔位于北偏西方向上,輪船從處以每小時海里的速度沿南偏西方向勻速航行,小時后到達碼頭處,此時,觀測燈塔位于北偏西方向上,則燈塔與碼頭的距離是______海里(結果精確到個位,參考數據:,,)14.若,,則的值為________.15.計算的結果等于__________.16.A、B兩地之間為直線距離且相距600千米,甲開車從A地出發前往B地,乙騎自行車從B地出發前往A地,已知乙比甲晚出發1小時,兩車均勻速行駛,當甲到達B地后立即原路原速返回,在返回途中再次與乙相遇后兩車都停止,如圖是甲、乙兩人之間的距離s(千類)與甲出發的時間t(小時)之間的圖象,則當甲第二次與乙相遇時,乙離B地的距離為_____千米.17.如圖,已知點E是菱形ABCD的AD邊上的一點,連接BE、CE,M、N分別是BE、CE的中點,連接MN,若∠A=60°,AB=4,則四邊形BCNM的面積為_____.18.對甲、乙兩臺機床生產的零件進行抽樣測量,其平均數、方差計算結果如下:機床甲:=10,=0.02;機床乙:=10,=0.06,由此可知:________(填甲或乙)機床性能好.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE弧.(1)求證:AB為⊙C的切線.(2)求圖中陰影部分的面積.20.(6分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.21.(6分)如圖1,拋物線y=ax2+(a+2)x+2(a≠0),與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點P(m,0)(0<m<4),過點P作x軸的垂線交直線AB于點N,交拋物線于點M.(1)求拋物線的解析式;(2)若PN:PM=1:4,求m的值;(3)如圖2,在(2)的條件下,設動點P對應的位置是P1,將線段OP1繞點O逆時針旋轉得到OP2,旋轉角為α(0°<α<90°),連接AP2、BP2,求AP2+的最小值.22.(8分)如圖,AD是△ABC的中線,CF⊥AD于點F,BE⊥AD,交AD的延長線于點E,求證:AF+AE=2AD.23.(8分)兩家超市同時采取通過搖獎返現金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進行了統計并制成了圖表(如圖)獎金金額獲獎人數20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市搖獎的顧客獲得獎金金額的中位數是,在乙超市搖獎的顧客獲得獎金金額的眾數是;(2)請你補全統計圖1;(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?(4)圖2是甲超市的搖獎轉盤,黃區20元、紅區15元、藍區10元、白區5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?24.(10分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;四邊形BFDE是平行四邊形.25.(10分)為提高市民的環保意識,倡導“節能減排,綠色出行”,某市計劃在城區投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點投放在某市中心城區正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區全面鋪開.按照試點投放中A,B兩車型的數量比進行投放,且投資總價值不低于184萬元.請問城區10萬人口平均每100人至少享有A型車與B型車各多少輛?26.(12分)先化簡,再選擇一個你喜歡的數(要合適哦!)代入求值:1+127.(12分)隨著交通道路的不斷完善,帶動了旅游業的發展,某市旅游景區有A、B、C、D、E等著名景點,該市旅游部門統計繪制出2017年“五?一”長假期間旅游情況統計圖,根據以下信息解答下列問題:(1)2017年“五?一”期間,該市周邊景點共接待游客萬人,扇形統計圖中A景點所對應的圓心角的度數是,并補全條形統計圖.(2)根據近幾年到該市旅游人數增長趨勢,預計2018年“五?一”節將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結果.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:如圖所示:設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據題意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=;故選B.【點睛】本題考查了解直角三角形、含30°角的直角三角形的性質、等腰三角形的性質、三角函數等,通過作輔助線求出AM是解決問題的關鍵.2、B【解析】

根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.3、B【解析】

延長AC交DE于點F,根據所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內錯角相等,兩直線平行;③同旁內角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內,垂直于同一直線的兩條直線互相平行.4、B【解析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.5、C【解析】

根據合并同類項的方法、同底數冪的除法法則、冪的乘方、負整數指數冪的意義逐項求解,利用排除法即可得到答案.【詳解】A.x2+x2=2x2,故不正確;B.x6÷x3=x3,故不正確;C.(x3)2=x6,故正確;D.x﹣1=,故不正確;故選C.【點睛】本題考查了合并同類項的方法、同底數冪的除法法則、冪的乘方、負整數指數冪的意義,解答本題的關鍵是熟練掌握各知識點.6、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數.故選A.7、C【解析】

Rt△ABC通過變換得到Rt△ODE,應先旋轉然后平移即可【詳解】∵Rt△ABC經過變化得到Rt△EDO,點B的坐標為(0,1),OD=2,∴DO=BC=2,CO=3,∴將△ABC繞點C順時針旋轉90°,再向下平移3個單位長度,即可得到△DOE;或將△ABC繞點O順時針旋轉90°,再向左平移3個單位長度,即可得到△DOE;故選:C.【點睛】本題考查的是坐標與圖形變化旋轉和平移的知識,解題的關鍵在于利用旋轉和平移的概念和性質求坐標的變化8、B【解析】

根據只有符號不同的兩個數互為相反數,可得答案.【詳解】7的相反數是?7,故選:B.【點睛】此題考查相反數,解題關鍵在于掌握其定義.9、B【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過點F作FP∥AE于P點(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當點E,F分別是AB,AD中點時(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點E,F分別是AB,AD中點,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項錯誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項正確;綜上所述,正確的結論有①③⑤,共3個,故選B.考點:四邊形綜合題.10、A【解析】

結合向左平移的法則,即可得到答案.【詳解】解:將拋物線y=x2+3向左平移2個單位可得y=(x+2)2+3,故選A.【點睛】此類題目主要考查二次函數圖象的平移規律,解題的關鍵是要搞清已知函數解析式確定平移后的函數解析式,還是已知平移后的解析式求原函數解析式,然后根據圖象平移規律“左加右減、上加下減“進行解答.11、C【解析】

根據平行線性質得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數.【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質和角平分線定義,關鍵是求出∠DAC或∠BAC的度數.12、D【解析】

首先根據不等式的性質,解出x≤,由數軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數軸可知,所以,解得;故選:.【點睛】本題主要考查了不等式的解法和在數軸上表示不等式的解集,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

作BD⊥AC于點D,在直角△ABD中,利用三角函數求得BD的長,然后在直角△BCD中,利用三角函數即可求得BC的長.【詳解】∠CBA=25°+50°=75°,作BD⊥AC于點D,則∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB?sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,則BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【點睛】本題考查了解直角三角形的應用——方向角問題,正確求得∠CBD以及∠CAB的度數是解決本題的關鍵.14、-.【解析】分析:已知第一個等式左邊利用平方差公式化簡,將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關鍵.15、【解析】

根據完全平方公式進行展開,然后再進行同類項合并即可.【詳解】解:.故填.【點睛】主要考查的是完全平方公式及二次根式的混合運算,注意最終結果要化成最簡二次根式的形式.16、【解析】

根據題意和函數圖象可以分別求得甲乙的速度,從而可以得到當甲第二次與乙相遇時,乙離B地的距離.【詳解】設甲的速度為akm/h,乙的速度為bkm/h,,解得,,設第二次甲追上乙的時間為m小時,100m﹣25(m﹣1)=600,解得,m=,∴當甲第二次與乙相遇時,乙離B地的距離為:25×(-1)=千米,故答案為.【點睛】本題考查一次函數的應用,解答本題的關鍵是明確題意,利用一次函數的性質和數形結合的思想解答.17、3【解析】

如圖,連接BD.首先證明△BCD是等邊三角形,推出S△EBC=S△DBC=×42=4,再證明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解決問題.【詳解】解:如圖,連接BD.∵四邊形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等邊三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S陰=4-=3,故答案為3.【點睛】本題考查相似三角形的判定和性質、三角形的中位線定理、菱形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.18、甲.【解析】試題分析:根據方差的意義可知,方差越小,穩定性越好,由此即可求出答案.試題解析:因為甲的方差小于乙的方差,甲的穩定性好,所以甲機床的性能好.故答案為甲.考點:1.方差;2.算術平均數.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)1-π.【解析】

(1)解直角三角形求出BC,根據勾股定理求出AB,根據三角形面積公式求出CF,根據切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質和判定等知識點,能求出CF的長是解答此題的關鍵.20、(1)證明見解析(2)1【解析】

(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對應角相等,以及切線的性質定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結合半徑OC=1可得答案.【詳解】(1)連接OC.∵OD⊥AC,OD經過圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.【點睛】本題考查了切線的性質定理以及判定定理,以及直角三角形三角函數的應用,證明圓的切線的問題常用的思路是根據切線的判定定理轉化成證明垂直的問題.21、(1);(2)m=3;(3)【解析】

(1)本題需先根據圖象過A點,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由條件可得到關于m的方程,則可求得m的值;(3)在y軸上取一點Q,使,可證的△P2OB∽△QOP2,則可求得Q點坐標,則可把AP2+BP2轉換為AP2+QP2,利用三角形三邊關系可知當A、P2、Q三點在一條線上時,有最小值,則可求出答案.【詳解】解:(1)∵A(4,0)在拋物線上,∴0=16a+4(a+2)+2,解得a=﹣,∴拋物線的解析式為y=;(2)∵∴令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x軸,∴△OAB∽△PAN,∴,∴,∴,∵M在拋物線上,∴PM=+2,∵PN:MN=1:3,∴PN:PM=1:4,∴,解得m=3或m=4(舍去);(3)在y軸上取一點Q,使,如圖,由(2)可知P1(3,0),且OB=2,∴,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴,∴當Q(0,)時,QP2=,∴AP2+BP2=AP2+QP2≥AQ,∴當A、P2、Q三點在一條線上時,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值為【點睛】本題考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里表示三角形的面積及線段和最小值問題,要求會用字母代替長度,坐標,會對代數式進行合理變形,難度相對較大.22、證明見解析.【解析】

由題意易用角角邊證明△BDE≌△CDF,得到DF=DE,再用等量代換的思想用含有AE和AF的等式表示AD的長.【詳解】證明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中線,∴BD=CD,∴在△BED與△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,

AD=AE-DE②,由①+②得:AF+AE=2AD.【點睛】該題考察了三角形全等的證明,利用全等三角形的性質進行對應邊的轉化.23、(1)10,5元;(2)補圖見解析;(3)在甲、乙兩超市參加搖獎的50名顧客平均獲獎分別為10元、8.2元;(4).【解析】

(1)根據中位數、眾數的定義解答即可;(2)根據表格中的數據補全統計圖即可;(3)根據計算平均數的公式求解即可;(4)根據扇形統計圖,結合概率公式求解即可.【詳解】(1)在甲超市搖獎的顧客獲得獎金金額的中位數是=10元,在乙超市搖獎的顧客獲得獎金金額的眾數5元,故答案為:10元、5元;(2)補全圖形如下:(3)在甲超市平均獲獎為=10(元),在乙超市平均獲獎為=8.2(元);(4)獲得獎金10元的概率是=.【點睛】本題考查了中位數及眾數的定義、平均數的計算公式及簡單概率的求法,熟知這些知識點是解決本題的關鍵.24、(1)見解析;(2)見解析;【解析】

(1)由四邊形ABCD是平行四邊形,根據平行四邊形的對邊相等,對角相等的性質,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四邊形BFDE是平行四

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論