江蘇省鹽城市大豐區第一共同體、射陽二中學2024屆中考猜題數學試卷含解析_第1頁
江蘇省鹽城市大豐區第一共同體、射陽二中學2024屆中考猜題數學試卷含解析_第2頁
江蘇省鹽城市大豐區第一共同體、射陽二中學2024屆中考猜題數學試卷含解析_第3頁
江蘇省鹽城市大豐區第一共同體、射陽二中學2024屆中考猜題數學試卷含解析_第4頁
江蘇省鹽城市大豐區第一共同體、射陽二中學2024屆中考猜題數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市大豐區第一共同體、射陽二中學2024屆中考猜題數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,平行四邊形ABCD中,E,F分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.2.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為A.6 B.8 C.10 D.123.小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“預祝中考成功”,其中“預”的對面是“中”,“成”的對面是“功”,則它的平面展開圖可能是()A. B. C. D.4.定義運算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數y=2※x的圖象大致是()A. B.C. D.5.2017年我國大學生畢業人數將達到7490000人,這個數據用科學記數法表示為()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×1076.下列方程中,沒有實數根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=07.花園甜瓜是樂陵的特色時令水果.甜瓜一上市,水果店的小李就用3000元購進了一批甜瓜,前兩天以高于進價40%的價格共賣出150kg,第三天她發現市場上甜瓜數量陡增,而自己的甜瓜賣相已不大好,于是果斷地將剩余甜瓜以低于進價20%的價格全部售出,前后一共獲利750元,則小李所進甜瓜的質量為()kg.A.180 B.200 C.240 D.3008.如圖,在△ABC中,∠CAB=75°,在同一平面內,將△ABC繞點A逆時針旋轉到△AB′C′的位置,使得CC′∥AB,則∠CAC′為()A.30° B.35° C.40° D.50°9.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數是()A.1 B.2 C.3 D.410.如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.12二、填空題(本大題共6個小題,每小題3分,共18分)11.若一段弧的半徑為24,所對圓心角為60°,則這段弧長為____.12.如圖所示,矩形ABCD的頂點D在反比例函數(x<0)的圖象上,頂點B,C在x軸上,對角線AC的延長線交y軸于點E,連接BE,△BCE的面積是6,則k=_____.13.若反比例函數y=的圖象與一次函數y=x+k的圖象有一個交點為(m,﹣4),則這個反比例函數的表達式為_____.14.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設AE,BF交于點G,連接DG,則DG的最小值為_______.15.為了估計池塘里有多少條魚,從池塘里捕撈了1000條魚做上標記,然后放回池塘里,經過一段時間,等有標記的魚完全混合于魚群中以后,再捕撈200條,若其中有標記的魚有10條,則估計池塘里有魚_____條.16.如圖,在△ABC中,∠BAC=50°,AC=2,AB=3,將△ABC繞點A逆時針旋轉50°,得到△AB1C1,則陰影部分的面積為_______.三、解答題(共8題,共72分)17.(8分)我們知道中,如果,,那么當時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?18.(8分)如圖,將等腰直角三角形紙片ABC對折,折痕為CD.展平后,再將點B折疊在邊AC上(不與A、C重合),折痕為EF,點B在AC上的對應點為M,設CD與EM交于點P,連接PF.已知BC=1.(1)若M為AC的中點,求CF的長;(2)隨著點M在邊AC上取不同的位置,①△PFM的形狀是否發生變化?請說明理由;②求△PFM的周長的取值范圍.19.(8分)如圖,△ABC內接于⊙O,∠B=600,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.20.(8分)“千年古都,大美西安”.某校數學興趣小組就“最想去的西安旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,(景點對應的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據調查結果進行數據整理后繪制出的不完整的統計圖:請根據圖中提供的信息,解答下列問題:(1)求被調查的學生總人數;(2)補全條形統計圖,并求扇形統計圖中表示“最想去景點D”的扇形圓心角的度數;(3)若該校共有800名學生,請估計“最想去景點B”的學生人數.21.(8分)如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為米,斜坡BC的坡度i=1:.小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.(1)求坡角∠BCD;(2)求旗桿AB的高度.(參考數值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)22.(10分)如圖,點A、B在⊙O上,點O是⊙O的圓心,請你只用無刻度的直尺,分別畫出圖①和圖②中∠A的余角.(1)圖①中,點C在⊙O上;(2)圖②中,點C在⊙O內;23.(12分)解不等式組:3x+3≥2x+72x+424.已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點,且向右平移1個單位長度后,剛好過點(3,1).①求此拋物線的解析式;②以y軸上的點P(1,n)為中心,作該拋物線關于點P對稱的拋物線y',若這兩條拋物線有公共點,求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當x=c時,y=1;當1<x<c時,y>1.試比較ac與1的大小,并說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

由平行四邊形性質得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質和判定、平行線的性質,三角函數的運用;熟練掌握平行四邊形的性質,勾股定理,判斷出AB=CE是解決問題的關鍵.2、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據三角形的面積公式求出AD的長,再再根據EF是線段AC的垂直平分線可知,點C關于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結論.【詳解】連接AD,∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點C關于直線EF的對稱點為點A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點睛】本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.3、C【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點對各選項分析判斷后利用排除法求解:【詳解】正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點對各選項分析判斷后利用排除法求解:A、“預”的對面是“考”,“?!钡膶γ媸恰俺伞?,“中”的對面是“功”,故本選項錯誤;B、“預”的對面是“功”,“?!钡膶γ媸恰翱肌?,“中”的對面是“成”,故本選項錯誤;C、“預”的對面是“中”,“?!钡膶γ媸恰翱肌?,“成”的對面是“功”,故本選項正確;D、“預”的對面是“中”,“?!钡膶γ媸恰俺伞保翱肌钡膶γ媸恰肮Α?,故本選項錯誤.故選C【點睛】考核知識點:正方體的表面展開圖.4、C【解析】

根據定義運算“※”為:a※b=,可得y=2※x的函數解析式,根據函數解析式,可得函數圖象.【詳解】解:y=2※x=,當x>0時,圖象是y=對稱軸右側的部分;當x<0時,圖象是y=對稱軸左側的部分,所以C選項是正確的.【點睛】本題考查了二次函數的圖象,利用定義運算“※”為:a※b=得出分段函數是解題關鍵.5、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】7490000=7.49×106.故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、D【解析】

分別計算各方程的根的判別式的值,然后根據判別式的意義判定方程根的情況即可.【詳解】A、△=(﹣2)2﹣4×1×0=4>0,方程有兩個不相等的實數根,所以A選項錯誤;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有兩個不相等的實數根,所以B選項錯誤;C、△=(﹣2)2﹣4×1×1=0,方程有兩個相等的實數根,所以C選項錯誤;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程沒有實數根,所以D選項正確.故選D.7、B【解析】

根據題意去設所進烏梅的數量為,根據前后一共獲利元,列出方程,求出x值即可.【詳解】解:設小李所進甜瓜的數量為,根據題意得:,解得:,經檢驗是原方程的解.答:小李所進甜瓜的數量為200kg.故選:B.【點睛】本題考查的是分式方程的應用,解題關鍵在于對等量關系的理解,進而列出方程即可.8、A【解析】

根據旋轉的性質可得AC=AC,∠BAC=∠BAC',再根據兩直線平行,內錯角相等求出∠ACC=∠CAB,然后利用等腰三角形兩底角相等求出∠CAC,再求出∠BAB=∠CAC,從而得解【詳解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′為對應點,點A為旋轉中心,∴AC=AC′,即△ACC′為等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故選A.【點睛】此題考查等腰三角形的性質,旋轉的性質和平行線的性質,運用好旋轉的性質是解題關鍵9、B【解析】試題分析:根據俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖10、C【解析】

設B點的坐標為(a,b),由BD=3AD,得D(,b),根據反比例函數定義求出關鍵點坐標,根據S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數的圖象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數系數k的幾何意義.結合圖形,分析圖形面積關系是關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、8π【解析】試題分析:∵弧的半徑為24,所對圓心角為60°,∴弧長為l==8π.故答案為8π.【考點】弧長的計算.12、-1【解析】

先設D(a,b),得出CO=-a,CD=AB=b,k=ab,再根據△BCE的面積是6,得出BC×OE=1,最后根據AB∥OE,得出,即BC?EO=AB?CO,求得ab的值即可.【詳解】設D(a,b),則CO=-a,CD=AB=b,∵矩形ABCD的頂點D在反比例函數y=(x<0)的圖象上,∴k=ab,∵△BCE的面積是6,∴×BC×OE=6,即BC×OE=1,∵AB∥OE,∴,即BC?EO=AB?CO,∴1=b×(-a),即ab=-1,∴k=-1,故答案為-1.【點睛】本題主要考查了反比例函數系數k的幾何意義,矩形的性質以及平行線分線段成比例定理的綜合應用,能很好地考核學生分析問題,解決問題的能力.解題的關鍵是將△BCE的面積與點D的坐標聯系在一起,體現了數形結合的思想方法.13、y=﹣.【解析】

把交點坐標代入兩個解析式組成方程組,解方程組求得k,即可求得反比例函數的解析式.【詳解】解:∵反比例函數y=的圖象與一次函數y=x+k的圖象有一個交點為(m,﹣4),∴,解得k=﹣5,∴反比例函數的表達式為y=﹣,故答案為y=﹣.【點睛】本題考查了反比例函數與一次函數的交點問題,根據圖象上點的坐標特征得出方程組是解題的關鍵.14、﹣1【解析】

先由圖形確定:當O、G、D共線時,DG最??;根據正方形的性質證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長,從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點G在以AB為直徑的圓上,由圖形可知:當O、G、D在同一直線上時,DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.【點睛】本題考查了正方形的性質與全等三角形的判定與性質,解題的關鍵是熟練的掌握正方形的性質與全等三角形的判定與性質.15、20000【解析】試題分析:1000÷=20000(條).考點:用樣本估計總體.16、π【解析】試題分析:∵,∴S陰影===.故答案為.考點:旋轉的性質;扇形面積的計算.三、解答題(共8題,共72分)17、(1)當,時有最大值1;(2)當時,面積有最大值32.【解析】

(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.

(2)設BD=x,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構建二次函數,利用二次函數的性質即可解決問題.【詳解】(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,

最大面積為×6×(16-6)=1.故當,時有最大值1;(2)當,時有最大值,設,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,∴拋物線開口向下∴當時,面積有最大值32.【點睛】本題考查三角形的面積,二次函數的應用等知識,解題的關鍵是學會利用參數構建二次函數解決問題.18、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會發生變化,理由見解析;②△PFM的周長滿足:2+2<(1+)y<1+1.【解析】

(1)由折疊的性質可知,FB=FM,設CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據FM2=CF2+CM2,構建方程即可解決問題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長即可解決問題;②設FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長=(1+)y,由2<y<1,可得結論.【詳解】(1)∵M為AC的中點,∴CM=AC=BC=2,由折疊的性質可知,FB=FM,設CF=x,則FB=FM=1﹣x,在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會發生變化,理由如下:由折疊的性質可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴,∴,∴,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,設FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周長=(1+)y,∵2<y<1,∴△PFM的周長滿足:2+2<(1+)y<1+1.【點睛】本題考查三角形綜合題、等腰直角三角形的性質和判定、翻折變換、相似三角形的判定和性質、勾股定理等知識,解題的關鍵是正確尋找相似三角形解決問題,學會利用參數解決問題,屬于中考??碱}型.19、(1)見解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結論.(2)利用含2的直角三角形的性質求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.20、(1)40;(2)想去D景點的人數是8,圓心角度數是72°;(3)280.【解析】

(1)用最想去A景點的人數除以它所占的百分比即可得到被調查的學生總人數;(2)先計算出最想去D景點的人數,再補全條形統計圖,然后用360°乘以最想去D景點的人數所占的百分比即可得到扇形統計圖中表示“醉美旅游景點D”的扇形圓心角的度數;(3)用800乘以樣本中最想去B景點的人數所占的百分比即可.【詳解】(1)被調查的學生總人數為8÷20%=40(人);(2)最想去D景點的人數為40-8-14-4-6=8(人),補全條形統計圖為:扇形統計圖中表示“醉美旅游景點D”的扇形圓心角的度數為×360°=72°;(3)800×=280,所以估計“醉美旅游景點B“的學生人數為280人.【點睛】本題考查了條形統計圖:條形統計圖是用線段長度表示數據,根據數量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.從條形圖可以很容易看出數據的大小,便于比較.也考查了扇形統計圖和利用樣本估計總體.21、旗桿AB的高度為6.4米.【解析】分析:(1)根據坡度i與坡角α之間的關系為:i=tanα進行計算;(2)根據余弦的概念求出CD,根據正切的概念求出AG、BG,計算即可.本題解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD=,∴∠BCD=30°;(2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,則DF=DC+CF=10(米),∵四邊形GDFE為矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論