江蘇省南京市29中學2025屆九上數學期末考試模擬試題含解析_第1頁
江蘇省南京市29中學2025屆九上數學期末考試模擬試題含解析_第2頁
江蘇省南京市29中學2025屆九上數學期末考試模擬試題含解析_第3頁
江蘇省南京市29中學2025屆九上數學期末考試模擬試題含解析_第4頁
江蘇省南京市29中學2025屆九上數學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京市29中學2025屆九上數學期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.給出下列函數,其中y隨x的增大而減小的函數是()①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).A.①③④ B.②③④ C.②④ D.②③2.若關于x的一元二次方程(a+1)x2+x+a2-1=0的一個解是x=0,則a的值為()A.1 B.-1 C.±1 D.03.如圖,太陽在房子的后方,那么你站在房子的正前方看到的影子為()A.B.C.D.4.在△ABC中,tanC=,cosA=,則∠B=()A.60° B.90° C.105° D.135°5.如圖,A,B,C,D為⊙O的四等分點,動點P從圓心O出發,沿O﹣C﹣D﹣O路線作勻速運動,設運動時間為t(s).∠APB=y(°),則下列圖象中表示y與t之間函數關系最恰當的是()A. B.C. D.6.如圖,在Rt△ABC中,∠C=Rt∠,則cosA可表示為(

)A. B. C. D.7.如圖,有一塊三角形余料ABC,它的面積為36,邊cm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上,則加工成的正方形零件的邊長為()cmA.8 B.6 C.4 D.38.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處9.如圖,小明利用測角儀和旗桿的拉繩測量學校旗桿的高度.如圖,旗桿PA的高度與拉繩PB的長度相等.小明將PB拉到PB′的位置,測得∠PB′C=α(B′C為水平線),測角儀B′D的高度為1m,則旗桿PA的高度為()A.m B.m C.m D.m10.二次函數的圖象向上平移個單位得到的圖象的解析式為()A. B. C. D.11.如圖,是⊙上的點,則圖中與相等的角是()A. B. C. D.12.如圖,在△ABC中,AB=AC,D、E、F分別是邊AB、AC、BC的中點,若CE=2,則四邊形ADFE的周長為()A.2 B.4 C.6 D.8二、填空題(每題4分,共24分)13.若為一元二次方程的一個根,則__________.14.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,則圖中陰影部分的面積是_______.15.一元二次方程5x2﹣1=4x的一次項系數是______.16.如圖,在矩形ABCD中,AB=2,AD=,以點C為圓心,以BC的長為半徑畫弧交AD于E,則圖中陰影部分的面積為__________.17.關于的方程的一個根為2,則______.18.某商場四月份的營業額是200萬元,如果該商場第二季度每個月營業額的增長率相同,都為,六月份的營業額為萬元,那么關于的函數解式是______.三、解答題(共78分)19.(8分)如圖,分別是的邊,上的點,,,,,求的長.20.(8分)如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,,擺動臂可繞點旋轉,.(1)在旋轉過程中①當、、三點在同一直線上時,求的長,②當、、三點為同一直角三角形的頂點時,求的長.(2)若擺動臂順時針旋轉,點的位置由外的點轉到其內的點處,如圖2,此時,,求的長.(3)若連接(2)中的,將(2)中的形狀和大小保持不變,把繞點在平面內自由旋轉,分別取、、的中點、、,連接、、、隨著繞點在平面內自由旋轉,的面積是否發生變化,若不變,請直接寫出的面積;若變化,的面積是否存在最大與最小?若存在,請直接寫出面積的最大值與最小值,(溫馨提示)21.(8分)在平面直角坐標系中,拋物線經過點,.(1)求這條拋物線所對應的函數表達式.(2)求隨的增大而減小時的取值范圍.22.(10分)有1張看上去無差別的卡片,上面分別寫著1、2、1.隨機抽取1張后,放回并混在一起,再隨機抽取1張.(I)請你用畫樹狀圖法(或列表法)列出兩次抽取卡片出現的所有可能結果;(Ⅱ)求兩次抽取的卡片上數字之和為偶數的概率.23.(10分)在平面直角坐標系中,直線y=x﹣2與x軸交于點B,與y軸交于點C,二次函數y=x2+bx+c的圖象經過B,C兩點,且與x軸的負半軸交于點A.(1)直接寫出:b的值為;c的值為;點A的坐標為;(2)點M是線段BC上的一動點,動點D在直線BC下方的二次函數圖象上.設點D的橫坐標為m.①如圖1,過點D作DM⊥BC于點M,求線段DM關于m的函數關系式,并求線段DM的最大值;②若△CDM為等腰直角三角形,直接寫出點M的坐標.24.(10分)如圖,在△ABC中,D為BC邊上的一點,且AC=,CD=4,BD=2,求證:△ACD∽△BCA.25.(12分)2019年,中央全面落實“穩房價”的長效管控機制,重慶房市較上一年大幅降溫,11月,LH地產共推出了大平層和小三居兩種房型共80套,其中大平層每套面積180平方米,單價1.8萬元/平方米,小三居每套面積120平方米,單價1.5萬元/平方米.(1)LH地產11月的銷售總額為18720萬元,問11月要推出多少套大平層房型?(2)2019年12月,中央經濟會議上重申“房子是拿來住的,不是拿來炒的”,重慶房市成功穩定并略有回落.為年底清盤促銷,LH地產調整營銷方案,12月推出兩種房型的總數量仍為80套,并將大平層的單價在原有基礎上每平方米下調萬元(m>0),將小三居的單價在原有基礎上每平方米下調萬元,這樣大平層的銷量較(1)中11月的銷量上漲了7m套,且推出的房屋全部售罄,結果12月的銷售總額恰好與(1)中I1月的銷售總額相等.求出m的值.26.如圖,在平面直角坐標系中有一直角三角形AOB,O為坐標原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉90°,得到△DOC,拋物線y=ax2+bx+c經過點A、B、C.(1)求拋物線的解析式;(2)若點P是第二象限內拋物線上的動點,其橫坐標為t,設拋物線對稱軸l與x軸交于一點E,連接PE,交CD于F,求以C、E、F為頂點三角形與△COD相似時點P的坐標.

參考答案一、選擇題(每題4分,共48分)1、D【解析】分別根據一次函數、二次函數及反比例函數的增減性進行解答即可【詳解】解:①∵y=2x中k=2>0,∴y隨x的增大而增大,故本小題錯誤;

②∵y=-2x+1中k=-2<0,∴y隨x的增大而減小,故本小題正確;

③∵y=(x<0)中k=2>0,∴x<0時,y隨x的增大而減小,故本小題正確;

④∵y=x2(x<1)中x<1,∴當0<x<1時,y隨x的增大而增大,故本小題錯誤.

故選D.【點睛】本題考查的是反比例函數的性質,熟知一次函數、二次函數及反比例函數的增減性是解答此題的關鍵.2、A【分析】方程的根即方程的解,就是能使方程兩邊相等的未知數的值,利用方程解的定義就可以得到關于a的方程,從而求得a的值,且(a+1)x2+x+a2-1=0為一元二次方程,即.【詳解】把x=0代入方程得到:a2-1=0解得:a=±1.(a+1)x2+x+a2-1=0為一元二次方程即.綜上所述a=1.故選A.【點睛】此題考查一元二次方程的解,解題關鍵在于掌握一元二次方程的求解方法.3、C【解析】根據平行投影的性質可知煙囪的影子應該在右下方,房子左邊對應的突起應該在影子的左邊.4、C【分析】直接利用特殊角的三角函數值得出∠C=30°,∠A=45°,進而得出答案.【詳解】解:∵tanC=,cosA=,

∴∠C=30°,∠A=45°,

∴∠B=180°-∠C-∠A=105°.

故選:C.【點睛】此題主要考查了特殊角的三角函數值,正確記憶相關數據是解題關鍵.5、C【解析】根據題意,分P在OC、CD、DO之間3個階段,分別分析變化的趨勢,又由點P作勻速運動,故圖像都是線段,分析選項可得答案.【詳解】根據題意,分3個階段;①P在OC之間,∠APB逐漸減小,到C點時,∠APB為45°,所以圖像是下降的線段,②P在弧CD之間,∠APB保持45°,大小不變,所以圖像是水平的線段,③P在DO之間,∠APB逐漸增大,到O點時,∠APB為90°,所以圖像是上升的線段,分析可得:C符合3個階段的描述;故選C.【點睛】本題主要考查了函數圖象與幾何變換,解決此類問題,注意將過程分成幾個階段,依次分析各個階段得變化情況,進而綜合可得整體得變化情況.6、C【解析】解:cosA=,故選C.7、C【分析】先求出△ABC的高,再根據正方形邊的平行關系,得出對應的相似三角形,即△AEF∽△ABC,從而根據相似三角形的性質求出正方形的邊長.【詳解】作AH⊥BC,交BC于H,交EF于D.設正方形的邊長為xcm,則EF=DH=xcm,∵△AB的面積為36,邊cm,∴AH=36×2÷12=6.∵EF∥BC,∴△AEF∽△ABC,∴,∴,∴x=4.故選C.【點睛】本題考查綜合考查相似三角形性質的應用以及正方形的有關性質,解題的關鍵是根據正方形的性質得到相似三角形.8、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.9、A【解析】設PA=PB=PB′=x,在RT△PCB′中,根據sinα=,列出方程即可解決問題.【詳解】設PA=PB=PB′=x,在RT△PCB′中,sinα=,∴=sinα,∴x-1=xsinα,∴(1-sinα)x=1,∴x=.故選A.【點睛】本題考查解直角三角形、三角函數等知識,解題的關鍵是設未知數列方程,屬于中考常考題型.10、B【分析】直接根據“上加下減”的原則進行解答即可.【詳解】由“上加下減”的原則可知,把二次函數y=x2的圖象向上平移2個單位,得到的新圖象的二次函數解析式是:y=x2+2.故答案選B.【點睛】本題考查了二次函數圖象與幾何變換,解題的關鍵是熟練的掌握二次函數圖象與幾何變換.11、D【分析】直接利用圓周角定理進行判斷.【詳解】解:∵與都是所對的圓周角,∴.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.12、D【分析】根據三角形的中點的概念求出AB、AC,根據三角形中位線定理求出DF、EF,計算得到答案.【詳解】解:∵點E是AC的中點,AB=AC,∴AB=AC=4,∵D是邊AB的中點,∴AD=2,∵D、F分別是邊、AB、BC的中點,∴DF=AC=2,同理,EF=2,∴四邊形ADFE的周長=AD+DF+FE+EA=8,故選:D.【點睛】本題考查的是三角形中位線定理,三角形的中位線平行于第三邊,且等于第三邊的一半.二、填空題(每題4分,共24分)13、-2【分析】把x=1代入已知方程可得關于m的方程,解方程即可求得答案.【詳解】解:∵為一元二次方程的一個根,∴,解得:m=-2.故答案為:-2.【點睛】本題考查了一元二次方程的解的定義,屬于應知應會題型,熟練掌握一元二次方程的解的概念是解題關鍵.14、【分析】陰影面積=矩形面積-三角形面積-扇形面積.【詳解】作EFBC于F,如圖所示:在Rt中,∴=2,∴,在Rt中,,∴,==故答案是:.【點睛】本題主要是利用扇形面積和三角形面積公式計算陰影部分的面積,解題關鍵是找到所求的量的等量關系.15、-4【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數且a≠0).在一般形式中ax2叫二次項,bx叫一次項,c是常數項.其中a,b,c分別叫二次項系數,一次項系數,常數項.【詳解】解:∵5x2﹣1=4x,方程整理得:5x2﹣4x﹣1=0,則一次項系數是﹣4,故答案為:﹣4【點睛】本題考查了一元二次方程的一般形式,解答本題要通過移項,轉化為一般形式,注意移項時符號的變化.16、【分析】連接CE,根據矩形和圓的性質、勾股定理可得,從而可得△CED是等腰直角三角形,可得,即可根據陰影部分的面積等于扇形面積加三角形的面積求解即可.【詳解】連接CE∵四邊形ABCD是矩形,AB=2,AD=,∴∵以點C為圓心,以BC的長為半徑畫弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴陰影部分的面積故答案為:.【點睛】本題考查了陰影部分面積的問題,掌握矩形和圓的性質、勾股定理、等腰直角三角形的性質、扇形的面積公式、三角形面積公式是解題的關鍵.17、1【分析】方程的根即方程的解,就是能使方程兩邊相等的未知數的值,利用方程解的定義就可以得到關于k的方程,從而求得k的值.【詳解】把x=2代入方程得:4k?2?2=0,解得k=1故答案為:1.【點睛】本題主要考查了方程的根的定義,是一個基礎的題目.18、或【分析】增長率問題,一般用增長后的量=增長前的量×(1+增長率),本題可先用x表示出五月份的營業額,再根據題意表示出六月份的營業額,即可列出方程求解.【詳解】解:設增長率為x,則五月份的營業額為:,六月份的營業額為:;故答案為:或.【點睛】本題考查了一元二次方程的應用中增長率問題,若原來的數量為a,平均每次增長或降低的百分率為x,經過第一次調整,就調整到a×(1±x),再經過第二次調整就是a×(1±x)(1±x)=a(1±x)1.增長用“+”,下降用“”.三、解答題(共78分)19、【分析】先求出AD的長,再根據平行線分線段成比例定理,即可求出AC.【詳解】解:∵,,∴.∵,∴.∵∴.∴.【點睛】此題考查的是平行線分線段成比例定理,掌握利用平行線分線段成比例定理列出比例式是解決此題的關鍵.20、(1)①或;②長為或;(2);(3)的面積會發生變化;存在,最大值為:,最小值為:【分析】(1)①分兩種情形分別求解即可;

②顯然不能為直角;當為直角時,根據計算即可;當為直角時,根據計算即可;(2)連接,,證得為等腰直角三角形,根據SAS可證得,根據條件可求得,根據勾股定理求得,即可求得答案;(3)根據三角形中位線定理,可證得是等腰直角三角形,求得,當取最大時,面積最大,當取最小時,面積最小,即可求得答案.【詳解】(1)①,或;②顯然不能為直角;當為直角時,,即,解得:;當為直角時,,即,;綜上:長為或;(2)如圖,連接,,根據旋轉的性質得:為等腰直角三角形,∴,,,,,,,在和中,,,,又∵,,,;(3)發生變化,存在最大值和最小值,理由:如圖,點P,M分別是,的中點,,,點N,P分別是,的中點,,,,,是等腰三角形,,,,,,,,,是等腰直角三角形;∴,當取最大時,面積最大,∴,當取最小時,面積最小,∴故:的面積發生變化,存在最大值和最小值,最大值為:,最小值為:.【點睛】本題是幾何變換綜合題,考查了等腰直角三角形的性質,勾股定理,全等三角形的判定和性質,三角形中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,有一定的難度.21、(1),(2)隨的增大而減小時.【解析】(1)把,代入解析式,解方程組求出a、b的值即可;(2)根據(1)中所得解析式可得對稱軸,a>0,在對稱軸左側y隨的增大而減小根據二次函數的性質即可得答案.【詳解】(1)∵拋物線經過點,.∴解得∴這條拋物線所對應的函數表達式為.(2)∵拋物線的對稱軸為直線,∵,∴圖象開口向上,∴y隨的增大而減小時x<1.【點睛】本題考查待定系數法確定二次函數解析式及二次函數的性質,a>0,開口向上,在對稱軸左側y隨的增大而減小,a<0,開口向下,在對稱軸右側y隨的增大而減小,熟練掌握二次函數的圖像和性質是解題關鍵.22、(I)9;(Ⅱ).【解析】(Ⅰ)直接用樹狀圖或列表法等方法列出各種可能出現的結果;(Ⅱ)由(Ⅰ)可知所有9種等可能的結果數,再找出兩次抽到的卡片上的數字之和為偶數的有5種.然后根據概率公式求解即可.【詳解】解:(Ⅰ)畫樹狀圖得:共有9種等可能的結果數;(Ⅱ)由(Ⅰ)可知:共有9種等可能的結果數,兩次抽取的卡片上數字之和為偶數的有5種,所以兩次抽到的卡片上的數字之和為偶數的概率為:.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.23、(1)﹣;﹣1;(﹣1,0);(1)①MD=(﹣m1+4m),DM最大值;②(,﹣)或(,﹣).【分析】(1)直線yx﹣1與x軸交于點B,與y軸交于點C,則點B、C的坐標為:(4,0)、(0,﹣1),即可求解;(1)①MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m),即可求解;②分∠CDM=90、∠MDC=90°、∠MCD=90°三種情況,分別求解即可.【詳解】(1)直線yx﹣1與x軸交于點B,與y軸交于點C,則點B、C的坐標為:(4,0)、(0,﹣1).將點B、C的坐標代入拋物線表達式并解得:b,c=﹣1.故拋物線的表達式為:…①,點A(﹣1,0).故答案為:,﹣1,(﹣1,0);(1)①如圖1,過點D作y軸的平行線交BC于點H交x軸于點E.設點D(m,m1m﹣1),點H(m,m﹣1).∵∠MDH+∠MHD=90°,∠OBC+∠BHE=90°,∠MHD=∠EHB,∴∠MDH=∠OBC=α.∵OC=1,OB=4,∴BC=,∴cos∠OBC=,則cos;MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m).∵0,故DM有最大值;②設點M、D的坐標分別為:(s,s﹣1),(m,n),nm1m﹣1;分三種情況討論:(Ⅰ)當∠CDM=90°時,如圖1,過點M作x軸的平行線交過點D與x軸的垂線于點F,交y軸于點E.易證△MEC≌△DFM,∴ME=FD,MF=CE,即s﹣1﹣1=m﹣s,ss﹣1﹣n,解得:s,或s=8(舍去).故點M(,);(Ⅱ)當∠MDC=90°時,如圖3,過D作直線DE⊥y軸于E,MF⊥DE于F.同理可得:s,或s=0(舍去).故點M(,);(Ⅲ)當∠MCD=90°時,則直線CD的表達式為:y=﹣1x﹣1…②,解方程組:得:(舍去)或,故點D(﹣1,0),不在線段BC的下方,舍去.綜上所述:點M坐標為:(,)或(,).【點睛】本題是二次函數的綜合題.主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養.要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.24、證明見解析.【分析】根據AC=,CD=4,BD=2,可得,根據∠C=∠C,即可證明結論.【詳解】解:∵AC=,CD=4,BD=2∴,∴∵∠C=∠C∴△ACD∽△BCA.【點睛】本題考查了相似三角形的性質和判定,掌握知識點是解題關鍵.25、(1)30(2)2【分析】(1)設推出大平層x套,小三居y套,根據題意列出方程求解即可;(2)由題意得,12月大平層推出套,單價為,12月小三居推出套,單價為,根據題意列出方程求解即可.【詳解】(1)解:設推出大平層x套,小三居y套,由題意得②①故11月要推出30套大平層房型;(2)解:由題意得,12月大平層推出套,單價為,12月小三居推出套,單價為∴解得或∵∴.【點睛】本題考查了一元一次方程組和一元二次方程的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論