




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
FinanceandEconomicsDiscussionSeries
FederalReserveBoard,Washington,D.C.
ISSN1936-2854(Print)
ISSN2767-3898(Online)
InformationFrictioninOTCInterdealerMarkets
BenjaminGardnerandYesolHuh
2024-040
Pleasecitethispaperas:
Gardner,Benjamin,andYesolHuh(2024).“InformationFrictioninOTCInterdealerMar-kets,”FinanceandEconomicsDiscussionSeries2024-040.Washington:BoardofGovernorsoftheFederalReserveSystem,
/10.17016/FEDS.2024.040
.
NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.
1
InformationFrictioninOTCInterdealerMarkets
BenjaminGardnerandYesolHuh*
November2,2023
Abstract
Inover-the-counter(OTC)securitiesmarkets,interdealermarketsareanimportantvenuethroughwhichdealerscanoffloadpositionsandshareriskamongstthemselves.Contrarytothepopularcon-ceptionthatsearchfrictionsmatterthemostinOTCmarkets,wefindthatintheinterdealermarketforU.S.corporatebonds,informationfrictionsaremostrelevant.Largedealersfacelargeandinformedcustomersandpaymorethansmalldealerstotransactintheinterdealermarket,despiteonaverageprovidingliquiditytootherdealers.Largedealerstendtotradethroughinterdealerbrokers(IDBs)tomitigateinformationleakage,butinterdealermarketsarestillfarfromefficient.
*BenjaminGardner:YaleUniversity,ben.gardner@;YesolHuh:FederalReserveBoard,yesol.huh@.Pleasedirectcommentsandquestionstoyesol.huh@.Theanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersofthestaff,bytheBoardofGovernors,orbytheFederalReserveSystem.
2
1Introduction
Inover-the-counter(OTC)securitiesmarkets,interdealermarketsareanimportantvenuethroughwhichdealerscanoffloadpositionsandshareriskwithoneother.Dealersintermediatecustomerorderflowandoffloadsomeofthatorderflowthroughtheinterdealermarket.MuchoftheliteratureonOTCmarketshasfocusedonsearchfrictionsandnetworkformationtoexplainpriceandtradingdynamics(Duffieetal.,2005;LagosandRocheteau,2009;Wang,2016).Moreover,theempiricalliteratureonOTCinterdealermarketshasemphasizedthecore-peripherynetworkinthismarketasanimperfectmechanismtomitigatesearchcosts.
Inthispaper,westudywhichfrictionsaremostrelevantintheOTCinterdealermarkets.WefindthatintheU.S.corporatebondmarket,contrarytopopularconception,informationfrictionsplayalargerole.Largedealersfacelargeandinformedcustomers,sotheyhaveamoredifficulttimeoffloadingcustomerorderintheinterdealermarket—largedealerspaymoretotransactintheinterdealermarketdespitethefactthattheyonaverageprovideliquidityinthismarket.Largedealerstendtotradethroughinterdealerbrokers(IDBs)tomitigateinformationleakage,butinterdealermarketsarestillfarfromefficient.
Wefirstdividedealersintosixcategories.Wegenerallythinkofdealersasengaginginsimilaractivities—intermediatingcustomerorderflowandoffloadingsomeofthoseorderflowintheinterdealermarket—anddifferingmostlyalongthedimensionsofsize,searchcosts,ortheirpositioninthenetwork.However,threecategories—alternativetradingsystems(ATS),interdealerbrokers(IDBs),andclientbrokers—are“special”typesinthatthesetypesofdealersaresomewhatdifferentfromtheusualsetofdealersthataretypicallydiscussedintheliterature.ATSandIDBspredominantlyengageininterdealertradesonly.ATSaredesignatedbyFINRAandaremostlydifferenttypesofelectronicplatforms.1IDBsarebrokersthatmatchbuyerswithsellersintheinterdealermarketandaccountfor25%ofinterdealervolume.Clientbrokersmostlyactasagentsbetweencustomersandotherdealers.Theotherthreedealercategoriesarethe“typical”dealers,whichwedivideintosmall,medium,andlargebycustomervolume.
Existingliteraturehasmostlycomparedcentraldealersandperipheraldealers.Notsurprisingly,largedealersaremorecentral,andsmalldealersareperipheral.Thus,some“centrality”effectsstudiedinthepriorliteraturesuchaswhethercentraldealerschargehigherbid-askspreads(LiandSch¨urhoff,2019;Hollifieldetal.,2016;DiMaggioetal.,2017;Dick-Nielsenetal.,2020)maybedrivenbydealerbalancesheetsizeorcustomervolume.Moreover,ourresultsindicatethatsomeoftheIDBsaccountforalargeshareofinterdealervolumeandarequitecentralintheinterdealernetwork.However,theseIDBsbehavequitedifferentlyfrom
1See
/filing-reporting/otc-transparency/finra-equity-ats-firms-listforthelistofATS
.
3
largedealers.Thus,someofthecentralityeffectsmaybeconflatingIDBsandlargedealers.Forinstance,thefindingthatcentraldealerschargehigherbid-askspreadsintheinterdealermarket(DiMaggioetal.,2017;Dick-Nielsenetal.,2020)maybebecauseIDBschargehigherbid-askspreadsandnotbecauselargedealerschargehigherbid-askspreads.
Westudywhoprovidesliquiditytowhomandatwhatpricesdifferentcategoriesofdealerstradeintheinterdealermarket.ConsistentwithLiandSch¨urhoff(2019),wefindthatlargedealerstendtoprovideliquiditytosmallerdealers.However,wealsofindthatdespiteprovidingliquidityonaverage,largedeal-ersactuallypayahighertradingcostintheinterdealermarketcomparedtomediumandsmalldealers.Additionally,interdealertradingcostshaveaU-shapeinwhichthelargestandthesmallestdealerspayhighertradingcoststhanmediumsizeddealers.Weconjecturethatforlargerdealers(top30-40dealers),informationasymmetrymattermore,andaswegotosmallerdealers,searchfrictionsmattermore.Ifso,giventhattop30dealersaccountformuchmoreoftheinterdealervolumethansmalldealers,informationasymmetryisthemoredominantfrictionintheU.S.corporatebondinterdealermarket.
Consistentwiththisconjecture,wefindthatlargedealersabsorbsignificantlymoreinformedcustomerorderflow.Thus,whentheytrytooffloadthoseorderflowintheinterdealermarket,otherswouldbereluctanttotradewiththem.Therefore,largedealersoffloadlessandfacehighertradingcostsintheinterdealermarket.2
Moreover,largedealersaremorelikelytotradethroughIDBsthansmallerdealersare.Ifsearchfrictionsweremoreimportant,wewouldexpectsmalldealerstoutilizeIDBsthemostsincesmalldealershavehighestsearchcosts.Ontheotherhand,informationasymmetrycanleadlargedealerstouseIDBs.Bilateralcontactcanleadtoinformationleakageevenifatradedoesnotultimatelyhappen,becausetradingintentandidentityarerevealedtothecounterparty.Ifthisinformationleakageiscostly,wewouldexpectlargedealerstotradethroughIDBstokeeptheiridentityhiddenandminimizeinformationleakage.Furthermore,GlodeandOpp(2016)arguethatintermediationchainscanhelpmitigateinformationasymmetry.Ifinformationasymmetrybetweenthepotentialbuyerandsellerishigh,trademaynothappendespitethepotentialgainsfromtrade.Tradingthroughamoderately-informedintermediarycanallowthetradetohappen,leadingtobetterallocations.Consistentwiththesechannels,largedealerstendtooffloadlargerpositionsthroughIDBsandsmallerpositionsbilaterally.Moreover,whenlargedealerstradewithIDBs,theirultimatecounterpartyisusuallyotherlargedealersthattheyalreadyhaveatradingrelationshipwith.Therefore,IDBsmostly
2Analternativebutnotmutuallyexclusiveexplanationforwhylargedealersoffloadlessisthatlargerdealersreceivemorecustomerorderflowandpotentiallycanmoreeasilyfindoffloadinginterestfromcustomers,whichwillresultinhigherprofit
thanoffloadingintheinterdealermarket(sl¨u,2019).Whilethischannellikelyplaysarole,itcannotexplainwhylargedealers
payhighertradingcostsintheinterdealermarket.
4
servetomitigateinformationfrictionsratherthansearchfrictions.
Lastly,wemeasureinterdealermarketefficiency.Ifinformationfrictionsareimportantenough,potentialgainsfromtradebetweenlargedealersmaybeforgone.Wefocusoncaseswithclearestpotentialgainsfromtrade,whereonedealerhadpositivecustomerorderflowandanotherdealerhadnegativecustomerorderflowinthesamebondonthesameday.Wethentrackwhetherthetwodealerstradewitheachothertooffsettheirpositionsinsubsequentdays,eitherdirectlythroughabilateraltradeorthroughachainoftrades.Wefindthatsuchgainsfromtradesarerealizedonlylessthan5%ofthetimethroughdirectbilateraltradingbetweenthetwodealers,andupto23%ofthetimethroughachainoftrades,usuallyinvolvingIDBs.Therefore,IDBshelpmitigateinformationfriction,butinterdealermarketsarestillrelativelyinefficient.
Overall,ourresultshaveafewimplicationsontheeffectoftransparencyandthesearchliterature.Sinceinformationiscontainedincustomerorderflow,disseminatinginformationaboutcustomertradesimmediatelywouldallowlargedealerstomoreeasilyoffloadininterdealermarketsbutbutmakeitharderforthemtoprofitfromtheinformation.ThisisconsistentwiththeresultsofLewisandSchwert(2021).Moreover,ourresultsindicatethatevenwithpost-tradetransparency,theinterdealermarket,especiallybetweenlargedealers,isinefficient.Thisimpliesthatforlargedealers,theriskofinformationleakageandinformationasymmetryarelargecomparedtotheirinventorycost.
OuranalysesalsohaveimplicationsfortheOTCsearchliterature.First,smalldealersandclientbrokershavetheroleofaggregatingandpassingonsmalluninformedcustomerorderflowtolargerdealers,andthesesmalldealersgetsomewhathigherbutdecentpricebecauseoftwooppositefrictions—highersearchcostsandlowerinformationasymmetry.Theyoffloadalargeshareoftheircustomerorderflowintheinterdealermarketwithinaday,whichismoreconsistentwithactiveoffloadingthanasearchframework.Second,thelengthofintermediationchainsisoftenusedasameasureofthedegreeofsearchfriction(FriewaldandNagler,2019),butourresultsindicatethatlongerintermediationchainslikelyinvolveIDBsandmaybedrivenbyinformationfrictionsratherthansearchfrictions.
LiandSch¨urhoff(2019)andHollifieldetal.(2016)documentthatdealersformtradingnetworkswithacore-peripherystructureinOTCmarketstomitigatesearchfrictions.3Subsequentpapershavefocusedonthecore-peripherystructureoftheinterdealersegmentofOTCmarketsandonwhethercustomerspayahigherbid-askspreadtocentraldealers(“centralitypremium”)ortoperipheraldealers(“centralitydiscount”).Inthemunicipalbondmarket,LiandSch¨urhoff(2019)showthatcoredealersprovideliquidity
andimmediacytobothcustomersandperipheraldealersandthatthereisacentralitypremium.DiMaggio3Hendershottetal.(2020b)documenttheimportanceofclientsestablishingtradingrelationshipswithdealerstomitigate
searchfrictions.
5
etal.(2017)andDick-Nielsenetal.(2020)documentacentralitypremiuminthecorporatebondinterdealermarket.Hollifieldetal.(2016)showthatthereisacentralitydiscountinsecuritizationmarkets.
WeaddtothisliteraturebyshowingthatintheinterdealersegmentofOTCmarkets,informationfrictionsmattergreatly,andwithinlargeandmediumdealers,morethansearchfrictions.Giventhattop30dealersaccountforalmost90%ofcustomervolumeandthatinformationfrictionsmattermoreforthesedealers,decreasinginformationfrictionswouldimprovemarketefficiencymorethandecreasinginterdealermarketsearchfrictions.Forthesmallretailtraderthattradeswithasmallperipheraldealer,searchfrictionsmattermore.Thus,overall,thereisaU-shapepatterninthedegreeoffrictions,whichismissedbypreviousliteraturebecausetheyusuallyassumealineareffectoncentrality(Dick-Nielsenetal.,2020).Also,becausemostpapershavefocusedoncompletedintermediationchains,theydonotlookatthedegreetoandthespeedofwhichvariousdealertypesoffloadtheircustomerorderflows,andwefillthatgap.
Wealsoshowthatthereareineffecttwotypesofdealerswithhighcentrality—largetraditionaldealersandIDBs.Thesetwotypesofdealersbehaveverydifferently,andsimplyconsideringacentralitydimensionandputtingtheminthesamecategorymayleadtomisleadingconclusions.IDBsandtheroletheyplayhavenotbeenstudiedmuchdespitethelargeshareofvolumethattheyaccountfor.AnexceptionisDeRoureetal.(2019),whichdocumenttheextensiveuseofIDBsintheGermansovereignbondinterdealermarketmarket.Theirfocusisonvenuechoice(exchange,bilateral,IDB)andarguethatuseofIDBsisdrivenbydealers’desiretopreserveaninformationaladvantageandavoidfrontrunning.WedocumentasimilarextensiveuseofIDBsintheU.S.corporatebondmarketandshowhowthatimpactsnetworkmeasuresandrisksharing.
Anumberofpapersshowthatthereisinformedtradinginthecorporatebondmarketarounddefault(HanandZhou,2014),acquisitions(KediaandZhou,2014),andearningsannouncements(WeiandZhou,2016).Hendershottetal.(2020a)showthatshort-sellersinthecorporatebondmarketareinformed.Thefocusinthesepapersaremostlytoshowtheexistenceofinformedtradingandthatcustomerorderflowcanpredictfuturereturns.Pinteretal.(2022)andCzechandPint′er(2022)showthatinformationasymmetryaffectscustomertradingcostsanddealer-customerconnections.Thesepapersmostlyfocusonthedealer-customermarketanddonotstudytheimpactofinformedtradingintheinterdealermarket.BabusandKondor(2018)modelsinformationpercolationinaninterdealernetwork,wheredealerslearnabouttheircounterparties’privateinformationbytrading.Theyfindthatingeneral,centraldealerspaylowertradingcostsbecausetheircounterpartiestendtobemoreconnected.Weshowthatdealers’informationprimarilycomesfromtheircustomerordersratherthanthroughtheirtradingrelationshipswithotherdealers.
6
2Data
WeusetheregulatoryTRACEdataforthesampleperiodofAugust2016throughJuly2019.Weapplystandardcleaningsuchascleaningfortradecancellationsandcorrectionsanddeletetradeswithnon-FINRAaffiliates.Becauseourfocusisoninterdealertrades,wekeepbothsidesofinterdealertradesaswellasaddingtheothersideoftradeforinterdealertradesthatarereportedonlyoncesuchastwo-sidedlocked-intrades.Wedeleteconvertiblebonds,MTNs,and144Abondsaswellastradesthathappeninthefirst30daysofissuance.BondcharacteristicsarefromFISDMergent.SimilartoChoietal.(2023),weaggregatethedealeridentifiers(MPIDs)uptoahighholderlevelbecausesomedealershavemultipleMPIDsorshiftuseofMPIDsovertime.WealsodeletetradesbetweenMPIDsofthesamehighholder.Wekeeptradesthatarereportedasprincipaltradesonly.Ourenddatahas11.8milliondealer-customertradesand18.9millioninterdealertradeobservations,withmostinterdealertradeappearingtwice,spanning11,510cusipsand1,069dealers.
WealsousetheFixedIncomeDataFeedfromICEDataPricing&ReferenceDatatocalculateinformationasymmetryinSection3.2.TheFixedIncomeDataFeedcontainsend-of-daydailypricesformostTRACEbondsoverthesampleperiod.4
3DealerTypesandInformationAsymmetry
3.1Dealerclassification
Weclassifythedealersintosixtypes—ATS,interdealerbrokers(IDBs),clientbrokers,small,medium,andlarge.Foreachdealerwithmorethan2000tradesoverthesampleperiod,wecalculatetheshareofthedealer’strades,separatelyintermsoftradecountandvolume,thatareinterdealertrades.Also,foreachdealer,wecalculatetheshareofprearrangedtradesbyvolumeandcount.5Wethenclassifythedealersinthefollowingway.
?“ATS”:OfthedealersthatareidentifiedasATSbyFINRA,thosethathavemorethan75%oftheirtradesininterdealertradesbybothvolumeandtradecountbasisormorethan90%oftheirtradesbyeithervolumeortradecountbasis
4Pricesare“evaluatedprices”bythedatavendor(IntercontinentalExchange),whichtoourbestofourknowledge,arecalculatedfromdealerquotes,tradedprices,andmatrixpricingmodel.
5Prearrangedtradesareidentifiedastradesthatremaininthedealers’inventoryforlessthan15minutes,andtheconstructionfollowsChoietal.(2023).
7
?“Interdealerbrokers”(IDBs):Alldealersthathavemorethan75%oftheirtradesininterdealertradesbybothvolumeandtradecountbasisormorethan90%oftheirtradesbyeithervolumeortradecountbasisthatarenotclassifiedasATS
?“Clientbrokers”(CBs):DealersthatarenotATSandIDBs,andalsohaveeitherprearrangedshareabove75%inbothvolumeandtradecountbasisorabove90%ineithervolumeortradecountbasis
?“Small,”“Medium,”and“Large”:Taketheremainingdealers.Foreachyear(Aug-Julyear),thetop
10bycustomervolumeareclassifiedas“large,”next20areclassifiedas“medium,”restare“small”
Table1providessummarystatisticsondealergroupclassification.Panel(a)reportstheshareofcustomervolumeandtheshareofinterdealervolumethateachdealertypeisinvolvedin.Asshowninpreviouspapers,customertradesareconcentrated,wherethetenlargestdealeraccountforalmost70%ofcustomervolume,andthenext20dealers(mediumdealers)accountforanother20%.Therearealargenumberofsmalldealersthataccountforfairlylittlecustomervolume.Thistablealsoshowsthatthereareanumberofdealersthataccountforverylittlecustomervolumebutafairlylargeamountofinterdealervolume.IDBstogetheraccountformorethan25%ofinterdealervolume,andATSaccountfor8.6%,butbothaccountforlessthan1%ofcustomervolume.Lastly,therearealargenumberofclientbrokers,whichmostlyactasanagentbetweencustomersanddealers.
Panel(b)showstheshareoftradesthatareDC-DC,DC-ID,ID-ID,orinvt>15mintrades.TheseclassificationsarefromChoietal.(2023).DC-DCtradesaredealer-customertradeoffloadedthroughanotherdealer-customertradewithin15minutes,thatis,thedealerprearrangedoffsettingcustomertrades.DC-IDtradesareinstancesinwhichcustomertradesareprearrangedwithoffsettinginterdealertrades.6Similarly,ID-IDtradesareinstancesofprearrangedoffsettinginterdealertrades.Lastly,invt>15mintradesaretradestakenintodealers’inventories.ResultsinPanel(b)indicatethatIDBs,whicharenotrestrictedtohavingahighprearrangedshare,stillprearrangealmost80%oftheirinterdealertrades.Thus,thesedealersmostlyactasbrokersbetweendifferentdealersininterdealertradesratherthanabsorbinginventory,hencewenamedthem“interdealerbrokers.”ATS,bydefinitionareplatformsthatdealerstradeon,andthusaremostlyID-IDtrades,andclientbrokers,byconstruction,containahighshareofDC-IDtrades.Themore“traditional”dealerstakelargershareoftradesintoinventory,butthissharealsovarieswithdealersize.Largedealers,comparedtomediumandsmalldealers,aremorelikelytotakebothcustomertradesandinterdealertradesintoinventoryandtherebyprovideimmediacy.Thisresultondealersizeisconsistentwith
6BoththecustomertradesandtheinterdealertradesinthesepairsarereferredtoasDC-IDtrades.
8
Table1:Summarystatisticsbydealertype:Panel(a)presentsforeachdealertype,theaveragenumberofdealersperyear,shareofinterdealertradesinwhichthedealertypeisapartyto,shareofdealer-customertradesinwhichthedealertypeisapartyto,andtheshareofdealertype’stradesthataredealer-customertrades.Panel(b)showsforeachdealertype,theshareofinterdealerordealer-customertradevolumethatareDC-DC,DC-ID,ID-ID,orinvt>15mintrades.TradetypeclassificationsarefromChoietal.(2023).InPanel(c),wepresentthecentralitymeasurescalculatedfrominterdealertrades.deg,ev,andclaredegreecentrality,eignenvectorcentrality,andcloselessmeasures,respectively.degvolsandevvolsaredegreecentralityandeigenvectorcentralityusinginterdealervolumeweights.Wefirstcalculateeachcentralitymeasureatthedealer-yearlevelandpresenttheaveragecentralitymeasures,weightedbyinterdealervolume,foreachdealertype.Panel(d)presentssummarystatisticsonwhotradeswithwhomintheinterdealermarket.Foreachdealertypeineachrow,wepresenttheshareoftheirtradevolumeswitheachcounterpartytypes.
(a)Dealergroupsummarystats
dealertype
#ofdealers
%oftotalIDvolume
%oftotalDCvolume
shareDC
large
10
32.01%
69.57%
81.65%
medium
20
13.72%
19.42%
74.35%
small
243.3
7.02%
4.22%
55.15%
ATS
10
8.57%
0.35%
7.70%
IDB
40
25.58%
0.66%
5.01%
clientbroker
545
13.11%
5.79%
47.50%
(b)Tradetypebydealergroup
dealertype
interdealer
dealer-customer
DC-ID
ID-ID
invt>15min
DC-DC
DC-ID
invt>15min
large
8.40%
0.67%
90.93%
12.03%
1.70%
86.27%
medium
9.05%
1.70%
89.25%
15.51%
2.98%
81.51%
small
20.15%
11.46%
68.39%
18.03%
16.20%
65.77%
ATS
6.63%
91.74%
1.63%
14.61%
81.85%
3.54%
IDB
2.15%
76.80%
21.05%
7.91%
41.44%
50.64%
clientbroker
45.34%
39.16%
15.50%
26.63%
50.21%
23.15%
(c)Dealergroupcentrality
dealertype
deg
degvols
ev
evvols
cl
large
288.563
6.846
0.869
0.469
0.568
medium
225.482
1.848
0.76
0.105
0.542
small
160.911
0.463
0.581
0.026
0.508
ATS
110.383
2.376
0.423
0.114
0.482
IDB
120.198
7.556
0.499
0.503
0.493
clientbroker
135.6
5.655
0.511
0.258
0.492
9
(d)Whotradeswithwhom:
dealertype
large
medium
small
ATS
IDB
clientbroker
large
9.18%
6.15%
6.08%
12.89%
49.11%
16.59%
medium
16.68%
7.04%
7.33%
12.49%
32.50%
23.96%
small
29.37%
14.48%
7.81%
8.59%
19.12%
20.63%
ATS
48.95%
22.73%
7.53%
8.31%
12.48%
IDB
61.53%
19.58%
5.70%
2.78%
1.85%
8.57%
clientbroker
33.67%
24.70%
11.17%
7.25%
15.88%
7.32%
LiandSch¨urhoff(2019).
Panel(c)presentstheaveragecentralitymeasuresforeachdealergroups.Manypapers(LiandSch¨urhoff,2019;Hollifieldetal.,2016)havedocumentedacore-peripherystructureinOTCinterdealermarkets.Look-ingatlarge,medium,andsmalldealergroups,dealersthataremorecentralintheinterdealermarketalsohavemorecustomertrades.ItisalsonotablethatIDBshavethehighestcentralitywhenvolume-weightedcentralitymeasuresareused.MostoftheliteraturemissesATSandIDBsthatstandtointermediatebe-tweendealers.BecauseIDBsarecentral,papersthatgroupdealersbycentralitymeasuresmaygroupIDBstogetherwithlargedealers,whichmayconfoundthebehaviorofthesetwoverydifferentgroupsofdealers.
Lastly,Panel(d)looksatwhotradeswithwhomintheinterdealermarket.LargedealerstradealmosthalfoftheirinterdealervolumewithIDBs,whichisquitesurprising.IfIDBs’mainfunctionwastoeasesearchfrictions,smallerdealersshouldutilizeIDBssignificantlymorethanlargedealersdo.However,wefindtheexactopposite—large,medium,andsmalldealerstradeabout49.1%,32.5%,and19.1%oftheirinterdealervolumethroughIDBs,respectively.
3.2InformationAsymmetry
Inthissubsection,weshowthatlargedealersfacethehighestinformationasymmetryfromtheircustomers.Wefirstcalculateinformationasymmetrythateachdealerfacesfromtheircustomersatthedealer,year,andratinggroup(investmentgradeorhighyield)levelinthefollowingway.Ifthedealerreceivedorderflowofvi,tfromcustomersforbondiondayt(positivevi,tmeansthatcustomersboughtfromthedealer,negativevi,tmeansthatcustomerssoldtothedealer):
vi,t|
εvi,t<0ri,[t,t+τ]
vi,t|
(1)
InfoAsym=
εvi,t>0ri,[t,t+τ]
?
εvi,t<0|vi,t
εvi,t>0|vi,t
10
whereri,[t,t+τ]isthemarket-adjustedreturnofbondibetweenendofdaytandt+τwhereτ=5.Dealerandyearsubscriptsareomittedintheequation.Wegetend-of-daybondpricesfromtheFixedIncomeDataFeed.Tocalculatemarket-adjustedreturn,wedividebondsintoportfoliosbyrating(AAAs,AA+throughAA-,A+throughA-,BBB+throughBBB-,BB+throughBB-,B+throughB-,CCCandlower)andtime-to-maturity.Wethensubtracttheportfolioreturnfrombondireturn.Werestrictthesampletobondsinwhichthepricedata(fromFixedIncomeDataFeed)isnotstalebydeletingbondsinwhichpricesremainexactlysameinconsecutivedaysformorethan10%ofthesample.
Thismeasurecaptureshowmuchthepricesmoveagainstthedealerwithinτdaysafterthecustomertrade.Becausethismeasuredoesn’ttakeintoaccounttheactualtradedprice,andthereforethebid-askspreadchargedtothecustomer,apositivemeasuredoesnotimplythatthedealerlosesmoneyonthecustomertrade.Itrathersaysthatifthedealertradedwithacustomerondayt,thepricewillmoveagainstthedealerbetweenendofdaytanddayt+τ.WedonotcalculateInfoAsymforATSandinterdealerbrokersbecausethesedealersdoverylittlecustomertrades.
Table2presentsthesummarystatisticsforInfoAsymbydealergroup.Largedealersfacehighestin-formationasymmetry—onaverage,afteracustomerbuysainvestmentgradebondfromalargedealer,market-adjustedpricesincreaseby10.9bps,comparedwithafteracustomersell.Thisnumbermorethandoubleforhigh-yieldbonds,whichalsosupportstheideathatInfoAsymmeasuresinformationasymme-try.Formediumdealers,averageInfoAsymis6.9bpsand11.3bpsforinvestmentgradeandhighyield,respectively,andInfoAsymismuchlowerforsmalldealersandclientbrokers.
Table2:Informationasymmetrysummarystat:ThetablebelowpresentsthemeanandmedianInfoAsymmeasureforeachde
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小班端午教學活動方案
- 師生慰問活動方案
- 小貓過生日半日活動方案
- 工會活動氣排球活動方案
- 工地禁煙活動方案
- 小班茶活動方案
- 工程項目質量日活動方案
- 崇明區員工聚會活動方案
- 常發公司年會活動方案
- 師傅鍛煉活動方案
- 牛津譯林版英語八年級下冊期末復習各單元話題寫作范文背誦
- 2024CSCO胃腸間質瘤診療指南解讀
- FZ∕T 61002-2019 化纖仿毛毛毯
- GB/T 3880.3-2024一般工業用鋁及鋁合金板、帶材第3部分:尺寸偏差
- 預激綜合征的護理
- 臨床試驗受試者補償標準
- (正式版)SHT 3225-2024 石油化工安全儀表系統安全完整性等級設計規范
- 高中語文《望海潮》《揚州慢》聯讀+課件+統編版高中語文選擇性必修下冊
- 中考教學工作總結7篇
- 貓咪洗護免責協議書
- 產后出血患者血液管理專家共識
評論
0/150
提交評論