福建省(南平廈門福州漳州市)2023-2024學年中考一模數學試題含解析_第1頁
福建省(南平廈門福州漳州市)2023-2024學年中考一模數學試題含解析_第2頁
福建省(南平廈門福州漳州市)2023-2024學年中考一模數學試題含解析_第3頁
福建省(南平廈門福州漳州市)2023-2024學年中考一模數學試題含解析_第4頁
福建省(南平廈門福州漳州市)2023-2024學年中考一模數學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省(南平廈門福州漳州市)2023-2024學年中考一模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.2.一個多邊形內角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形3.如圖是我國南海地區圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山4.如果關于x的方程沒有實數根,那么c在2、1、0、中取值是()A.; B.; C.; D..5.的相反數是()A.2 B.﹣2 C.4 D.﹣6.如圖,數軸A、B上兩點分別對應實數a、b,則下列結論正確的是()A.a+b>0 B.ab>0 C.1a+7.如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結論有()A.4個 B.3個 C.2個 D.1個8.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC9.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°10.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數是()A.60° B.65° C.55° D.50°11.的整數部分是()A.3 B.5 C.9 D.612.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(

)A.4 B.6 C.8 D.10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在函數y=x-1的表達式中,自變量x的取值范圍是.14.化簡:=____.15.如果,那么=_____.16.規定一種新運算“*”:a*b=a-b,則方程x*2=1*x的解為________.17.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.18.如圖,反比例函數y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.求證:;若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.20.(6分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.21.(6分)某商場以每件280元的價格購進一批商品,當每件商品售價為360元時,每月可售出60件,為了擴大銷售,商場決定采取適當降價的方式促銷,經調查發現,如果每件商品降價1元,那么商場每月就可以多售出5件.降價前商場每月銷售該商品的利潤是多少元?要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應降價多少元?22.(8分)某公司為了擴大經營,決定購進6臺機器用于生產某活塞.現有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產活塞的數量如下表所示.經過預算,本次購買機器所耗資金不能超過34萬元.甲乙價格(萬元/臺)75每臺日產量(個)10060(1)按該公司要求可以有幾種購買方案?如果該公司購進的6臺機器的日生產能力不能低于380個,那么為了節約資金應選擇什么樣的購買方案?23.(8分)未成年人思想道德建設越來越受到社會的關注,遼陽青少年研究所隨機調查了本市一中學100名學生寒假中花零花錢的數量(錢數取整數元),以便引導學生樹立正確的消費觀.根據調查數據制成了頻分組頻數頻率0.5~50.50.150.5~200.2100.5~150.5200.5300.3200.5~250.5100.1率分布表和頻率分布直方圖(如圖).(1)補全頻率分布表;(2)在頻率分布直方圖中,長方形ABCD的面積是;這次調查的樣本容量是;(3)研究所認為,應對消費150元以上的學生提出勤儉節約的建議.試估計應對該校1000名學生中約多少名學生提出這項建議.24.(10分)畫出二次函數y=(x﹣1)2的圖象.25.(10分)如圖,在△ABC中,∠ABC=90°,BD⊥AC,垂足為D,E為BC邊上一動點(不與B、C重合),AE、BD交于點F.(1)當AE平分∠BAC時,求證:∠BEF=∠BFE;(2)當E運動到BC中點時,若BE=2,BD=2.4,AC=5,求AB的長.26.(12分)如圖,一次函數y=kx+b的圖象與反比例函數y=mx(1)求一次函數,反比例函數的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.27.(12分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:根據中心對稱圖形的定義,結合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.2、B【解析】

多邊形的外角和是310°,則內角和是2×310=720°.設這個多邊形是n邊形,內角和是(n﹣2)?180°,這樣就得到一個關于n的方程,從而求出邊數n的值.【詳解】設這個多邊形是n邊形,根據題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.【點睛】本題考查了多邊形的內角與外角,熟記內角和公式和外角和定理并列出方程是解題的關鍵.根據多邊形的內角和定理,求邊數的問題就可以轉化為解方程的問題來解決.3、A【解析】

根據兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關鍵是熟練的掌握兩點之間直線距離最短.4、A【解析】分析:由方程根的情況,根據根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關于x的方程x1+1x+c=0沒有實數根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數與根的判別式的關系是解題的關鍵.5、A【解析】分析:根據只有符號不同的兩個數是互為相反數解答即可.詳解:的相反數是,即2.故選A.點睛:本題考查了相反數的定義,解答本題的關鍵是熟練掌握相反數的定義,正數的相反數是負數,0的相反數是0,負數的相反數是正數.6、C【解析】

本題要先觀察a,b在數軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【點睛】本題考查了實數與數軸的對應關系,數軸上右邊的數總是大于左邊的數.7、A【解析】

①正確.只要證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正確.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;③正確.只要證明DM垂直平分CF,即可證明;④正確.設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,可得tan∠CAD===.【詳解】如圖,過D作DM∥BE交AC于N.∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于點F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴=.∵AE=AD=BC,∴=,∴CF=2AF,故②正確;∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF.∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正確.故選A.【點睛】本題考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.解題時注意:相似三角形的對應邊成比例.8、A【解析】

根據折疊的性質明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內角和外角之間的關系以及等腰三角形的性質.還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內角和.(1)三角形的內角和是180度.求角的度數常常要用到“三角形的內角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.9、C【解析】

解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【點睛】本題考查平行線的判定,難度不大.10、A【解析】試題分析:根據五邊形的內角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數,再根據角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數.解:∵五邊形的內角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內角與外角;三角形內角和定理.11、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故選C.12、B【解析】

平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小,根據三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小。∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是利用三角形中位線定理進行求解.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≥1.【解析】

根據被開方數大于等于0列式計算即可得解.【詳解】根據題意得,x﹣1≥0,解得x≥1.故答案為x≥1.【點睛】本題考查函數自變量的取值范圍,知識點為:二次根式的被開方數是非負數.14、【解析】

先利用除法法則變形,約分后通分并利用同分母分式的減法法則計算即可.【詳解】原式,

故答案為【點睛】本題考查了分式的混合運算,熟練掌握運算法則是解題的關鍵.15、【解析】試題解析:設a=2t,b=3t,故答案為:16、【解析】

根據題中的新定義化簡所求方程,求出方程的解即可.【詳解】根據題意得:x-×2=×1-,x=,解得:x=,故答案為x=.【點睛】此題的關鍵是掌握新運算規則,轉化成一元一元一次方程,再解這個一元一次方程即可.17、1【解析】原方程為3x2?6x+1=0,二次項系數化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.18、(,)【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進而可得出AE=OF、OE=CF,根據角平分線的性質可得出,設點A的坐標為(a,)(a>0),由可求出a值,進而得到點A的坐標.詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設點A的坐標為(a,),∴,解得:a=或a=-(舍去),∴=,∴點A的坐標為(,),故答案為:((,)).點睛:本題考查了反比例函數圖象上點的坐標特征、全等三角形的判定與性質、角平分線的性質以及等腰直角三角形性質的綜合運用,構造全等三角形,利用全等三角形的對應邊相等是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)補圖見解析;.【解析】

根據等腰三角形的性質得到,等量代換得到,根據余角的性質即可得到結論;根據平行線的判定定理得到AD∥BG,推出四邊形ABGD是平行四邊形,得到平行四邊形ABGD是菱形,設AB=BG=GD=AD=x,解直角三角形得到,過點B作于H,根據平行四邊形的面積公式即可得到結論.【詳解】解:,,,,,,,,;補全圖形,如圖所示:,,,,,,,,,且,,,,四邊形ABGD是平行四邊形,,平行四邊形ABGD是菱形,設,,,,過點B作于H,..故答案為(1)證明見解析;(2)補圖見解析;.【點睛】本題考查等腰三角形的性質,平行四邊形的判定和性質,菱形的判定和性質,解題的關鍵是正確的作出輔助線.20、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據30°所對的直角邊等于斜邊的一半可得:根據“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∠DCF=45°,設∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【點睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質等,掌握等底高三角形的性質是解題的關鍵.21、(1)4800元;(2)降價60元.【解析】試題分析:(1)先求出降價前每件商品的利潤,乘以每月銷售的數量就可以得出每月的總利潤;(2)設每件商品應降價x元,由銷售問題的數量關系“每件商品的利潤×商品的銷售數量=總利潤”列出方程,解方程即可解決問題.試題解析:(1)由題意得60×(360-280)=4800(元).即降價前商場每月銷售該商品的利潤是4800元;(2)設每件商品應降價x元,由題意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于減少庫存,則x=60.即要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應降價60元.點睛:本題考查了列一元二次方程解實際問題的銷售問題,解答時根據銷售問題的數量關系建立方程是關鍵.22、(1)有3種購買方案①購乙6臺,②購甲1臺,購乙5臺,③購甲2臺,購乙4臺(2)購買甲種機器1臺,購買乙種機器5臺,【解析】

(1)設購買甲種機器x臺(x≥0),則購買乙種機器(6-x)臺,根據買機器所耗資金不能超過34萬元,即購買甲種機器的錢數+購買乙種機器的錢數≤34萬元.就可以得到關于x的不等式,就可以求出x的范圍.

(2)該公司購進的6臺機器的日生產能力不能低于380個,就是已知不等關系:甲種機器生產的零件數+乙種機器生產的零件數≤380件.根據(1)中的三種方案,可以計算出每種方案的需要資金,從而選擇出合適的方案.【詳解】解:(1)設購買甲種機器x臺(x≥0),則購買乙種機器(6-x)臺依題意,得7x+5(6-x)≤34解這個不等式,得x≤2,即x可取0,1,2三個值.∴該公司按要求可以有以下三種購買方案:方案一:不購買甲種機器,購買乙種機器6臺.方案二:購買甲種機器l1臺,購買乙種機器5臺.方案三:購買甲種機器2臺,購買乙種機器4臺(2)根據題意,100x+60(6-x)≥380解之得x>由(1)得x≤2,即≤x≤2.∴x可取1,2倆值.即有以下兩種購買方案:購買甲種機器1臺,購買乙種機器5臺,所耗資金為1×7+5×5=32萬元;購買甲種機器2臺,購買乙種機器4臺,所耗資金為2×7+4×5=34萬元.∴為了節約資金應選擇購買甲種機器1臺,購買乙種機器5臺,.【點睛】解決本題的關鍵是讀懂題意,找到符合題意的不等關系式,正確確定各種情況,確定各種方案.23、⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】

(1)由頻數直方圖知組距是50,分組數列中依次填寫100.5,150.5;0.5-50.5的頻數=100×0.1=10,由各組的頻率之和等于1可知:100.5-150.5的頻率=1-0.1-0.2-0.3-0.1-0.05=0.25,則頻數=100×0.25=25,由此填表即可;(2)在頻率分布直方圖中,長方形ABCD的面積為50×0.25=12.5,這次調查的樣本容量是100;(3)先求得消費在150元以上的學生的頻率,繼而可求得應對該校1000學生中約多少名學生提出該項建議..【詳解】解:填表如下:(2)長方形ABCD的面積為0.25,樣本容量是100;提出這項建議的人數人.【點睛】本題考查了頻數分布表,樣本估計總體、樣本容量等知識.注意頻數分布表中總的頻率之和是1.24、見解析【解析】

首先可得頂點坐標為(1,0),然后利用對稱性列表,再描點,連線,即可作出該函數的圖象.【詳解】列表得:x…﹣10123…y…41014…如圖:.【點睛】此題考查了二次函數的圖象.注意確定此二次函數的頂點坐標是關鍵.25、(1)證明見解析;(1)2【解析】分析:(1)根據角平分線的定義可得∠1=∠1,再根據等角的余角相等求出∠BEF=∠AFD,然后根據對頂角相等可得∠BFE=∠AFD,等量代換即可得解;(1)根據中點定義求出BC,利用勾股定理列式求出AB即可.詳解:(1)如圖,∵AE平分∠BAC,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(對頂角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論