安徽省馬鞍山市和縣2023-2024學年中考數學模擬試卷含解析_第1頁
安徽省馬鞍山市和縣2023-2024學年中考數學模擬試卷含解析_第2頁
安徽省馬鞍山市和縣2023-2024學年中考數學模擬試卷含解析_第3頁
安徽省馬鞍山市和縣2023-2024學年中考數學模擬試卷含解析_第4頁
安徽省馬鞍山市和縣2023-2024學年中考數學模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省馬鞍山市和縣2023-2024學年中考數學模擬精編試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.若等式(-5)□5=–1成立,則□內的運算符號為()A.+ B.– C.× D.÷2.如圖,等邊△ABC的邊長為4,點D,E分別是BC,AC的中點,動點M從點A向點B勻速運動,同時動點N沿B﹣D﹣E勻速運動,點M,N同時出發且運動速度相同,點M到點B時兩點同時停止運動,設點M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數關系的圖象是()A. B.C. D.3.如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數據中,能作為一個智慧三角形三邊長的一組是()A.1,2,3 B.1,1, C.1,1, D.1,2,4.如圖,直線l是一次函數y=kx+b的圖象,若點A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.75.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數的和為7,未伸出手指數的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數應該分別為()A.1,2 B.1,3C.4,2 D.4,36.已知二次函數的圖象如圖所示,則下列結論:①ac>0;②a-b+c<0;

當時,;,其中錯誤的結論有A.②③ B.②④ C.①③ D.①④7.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.58.下列各數中最小的是()A.0 B.1 C.﹣ D.﹣π9.如圖,二次函數y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結論:①abc>0;②9a+3b+c>0;③c>﹣1;④關于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個10.如圖1所示,甲、乙兩車沿直路同向行駛,車速分別為20m/s和v(m/s),起初甲車在乙車前a(m)處,兩車同時出發,當乙車追上甲車時,兩車都停止行駛.設x(s)后兩車相距y(m),y與x的函數關系如圖2所示.有以下結論:①圖1中a的值為500;②乙車的速度為35m/s;③圖1中線段EF應表示為;④圖2中函數圖象與x軸交點的橫坐標為1.其中所有的正確結論是()A.①④ B.②③C.①②④ D.①③④二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的一元二次方程x2-2x+m-1=0有兩個相等的實數根,則m的值為_________12.某航空公司規定,旅客乘機所攜帶行李的質量x(kg)與其運費y(元)由如圖所示的一次函數圖象確定,則旅客可攜帶的免費行李的最大質量為kg13.21世紀納米技術將被廣泛應用.納米是長度的度量單位,1納米=0.000000001米,則12納米用科學記數法表示為_______米.14.邊長為3的正方形網格中,⊙O的圓心在格點上,半徑為3,則tan∠AED=_______.15.已知⊙O的面積為9πcm2,若點O到直線L的距離為πcm,則直線l與⊙O的位置關系是_____.16.如圖,以銳角△ABC的邊AB為直徑作⊙O,分別交AC,BC于E、D兩點,若AC=14,CD=4,7sinC=3tanB,則BD=_____.三、解答題(共8題,共72分)17.(8分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉過程中,AD′和BE′有怎樣的數量關系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結果保留根號)18.(8分)在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是_____.19.(8分)某市為了解市民對已閉幕的某一博覽會的總體印象,利用最新引進的“計算機輔助電話訪問系統”(簡稱CATI系統),采取電腦隨機抽樣的方式,對本市年齡在16~65歲之間的居民,進行了400個電話抽樣調查.并根據每個年齡段的抽查人數和該年齡段對博覽會總體印象感到滿意的人數繪制了下面的圖(1)和圖(1)(部分)根據上圖提供的信息回答下列問題:(1)被抽查的居民中,人數最多的年齡段是歲;(1)已知被抽查的400人中有83%的人對博覽會總體印象感到滿意,請你求出31~40歲年齡段的滿意人數,并補全圖1.注:某年齡段的滿意率=該年齡段滿意人數÷該年齡段被抽查人數×100%.20.(8分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結果都保留根號).21.(8分)如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.22.(10分)如圖,點E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.求證:AB=DC;試判斷△OEF的形狀,并說明理由.23.(12分)如圖,在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的長;設,,求向量(用向量、表示).24.廬陽春風體育運動品商店從廠家購進甲,乙兩種T恤共400件,其每件的售價與進貨量(件)之間的關系及成本如下表所示:T恤每件的售價/元每件的成本/元甲50乙60(1)當甲種T恤進貨250件時,求兩種T恤全部售完的利潤是多少元;若所有的T恤都能售完,求該商店獲得的總利潤(元)與乙種T恤的進貨量(件)之間的函數關系式;在(2)的條件下,已知兩種T恤進貨量都不低于100件,且所進的T恤全部售完,該商店如何安排進貨才能使獲得的利潤最大?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據有理數的除法可以解答本題.【詳解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,則□內的運算符號為÷,故選D.【點睛】考查有理數的混合運算,解答本題的關鍵是明確有理數的混合運算的計算方法.2、A【解析】

根據題意,將運動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點D到AB距離為,當0≤x≤2時,y=;當2≤x≤4時,y=.根據函數解析式,A符合條件.故選A.【點睛】本題為動點問題的函數圖象,解答關鍵是找到動點到達臨界點前后的一般圖形,分類討論,求出函數關系式.3、D【解析】

根據三角形三邊關系可知,不能構成三角形,依此即可作出判定;

B、根據勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;

C、解直角三角形可知是頂角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,依此即可作出判定.【詳解】∵1+2=3,不能構成三角形,故選項錯誤;

B、∵12+12=()2,是等腰直角三角形,故選項錯誤;

C、底邊上的高是=,可知是頂角120°,底角30°的等腰三角形,故選項錯誤;

D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定義,故選項正確.

故選D.4、C【解析】

把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數解析式y=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點睛】本題考核知識點:考查了待定系數法求一次函數的解析式,根據解析式再求函數值.5、A【解析】試題分析:通過猜想得出數據,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規則,得出一般結論.解題關鍵是對號入座不要找錯對應關系.6、C【解析】

①根據圖象的開口方向,可得a的范圍,根據圖象與y軸的交點,可得c的范圍,根據有理數的乘法,可得答案;

②根據自變量為-1時函數值,可得答案;

③根據觀察函數圖象的縱坐標,可得答案;

④根據對稱軸,整理可得答案.【詳解】圖象開口向下,得a<0,

圖象與y軸的交點在x軸的上方,得c>0,ac<,故①錯誤;

②由圖象,得x=-1時,y<0,即a-b+c<0,故②正確;

③由圖象,得

圖象與y軸的交點在x軸的上方,即當x<0時,y有大于零的部分,故③錯誤;

④由對稱軸,得x=-=1,解得b=-2a,

2a+b=0

故④正確;

故選D.【點睛】考查了二次函數圖象與系數的關系:二次項系數a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.7、C【解析】

根據三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質,先證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方得到=是解決問題的關鍵.8、D【解析】

根據任意兩個實數都可以比較大小.正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數是﹣π.故選:D.【點睛】本題考查了實數大小的比較,理解任意兩個實數都可以比較大小.正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小是關鍵.9、D【解析】

根據拋物線的圖象與系數的關系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設關于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【點睛】本題考查的是二次函數圖象與系數的關系,二次函數y=ax1+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.本題屬于中等題型.10、A【解析】分析:①根據圖象2得出結論;②根據(75,125)可知:75秒時,兩車的距離為125m,列方程可得結論;③根據圖1,線段的和與差可表示EF的長;④利用待定系數法求直線的解析式,令y=0可得結論.詳解:①y是兩車的距離,所以根據圖2可知:圖1中a的值為500,此選項正確;②由題意得:75×20+500-75y=125,v=25,則乙車的速度為25m/s,故此選項不正確;③圖1中:EF=a+20x-vx=500+20x-25x=500-5x.故此選項不正確;④設圖2的解析式為:y=kx+b,把(0,500)和(75,125)代入得:,解得,∴y=-5x+500,當y=0時,-5x+500=0,x=1,即圖2中函數圖象與x軸交點的橫坐標為1,此選項正確;其中所有的正確結論是①④;故選A.點睛:本題考查了一次函數的應用,根據函數圖象,讀懂題目信息,理解兩車間的距離與時間的關系是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解析】試題分析:已知方程x2-2x=0有兩個相等的實數根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.12、20【解析】設函數表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當y=0時x=20所以免費行李的最大質量為20kg13、1.2×10﹣1.【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10?n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10?n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.14、【解析】

根據同弧或等弧所對的圓周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.【詳解】解:∵∠AED=∠ABD(同弧所對的圓周角相等),∴tan∠AED=tanB=.故答案為:.【點睛】本題主要考查了圓周角定理、銳角三角函數的定義.解答網格中的角的三角函數值時,一般是將所求的角與直角三角形中的等角聯系起來,通過解直角三角形中的三角函數值來解答問題.15、相離【解析】

設圓O的半徑是r,根據圓的面積公式求出半徑,再和點0到直線l的距離π比較即可.【詳解】設圓O的半徑是r,則πr2=9π,∴r=3,∵點0到直線l的距離為π,∵3<π,即:r<d,∴直線l與⊙O的位置關系是相離,故答案為:相離.【點睛】本題主要考查對直線與圓的位置關系的理解和掌握,解此題的關鍵是知道當r<d時相離;當r=d時相切;當r>d時相交.16、1【解析】如圖,連接AD,根據圓周角定理可得AD⊥BC.在Rt△ADC中,sinC=ADAC;在Rt△ABD中,tanB=ADBD.已知7sinC=3tanB,所以7×ADAC=3×ADBD,又因點睛:此題主要考查的是圓周角定理和銳角三角函數的定義,以公共邊AD為橋梁,利用銳角三角函數的定義得到tanB和sinC的式子是解決問題的關鍵.三、解答題(共8題,共72分)17、(1)當CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】

(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉的性質,即可判斷出△ACD≌△BCE'即可得出結論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結論.【詳解】(1)當CC'=時,四邊形MCND'是菱形.理由:由平移的性質得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當α≠180°時,由旋轉的性質得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當α=180°時,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關系得,AP<AC+CP,∴當點A,C,P三點共線時,AP最大,如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質,菱形的性質,平移和旋轉的性質,等邊三角形的判定和性質,勾股定理,解(1)的關鍵是四邊形MCND'是平行四邊形,解(2)的關鍵是判斷出點A,C,P三點共線時,AP最大.18、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】

(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關于x軸的對稱點為點M1(1,-2);②點M(1,2)關于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經過點M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【點睛】本題考查了一次函數圖象與幾何變換,一次函數圖象上點的坐標特征,一次函數的性質,解一元一次不等式組,都是基礎知識,需熟練掌握.19、(1)11~30;(1)31~40歲年齡段的滿意人數為66人,圖見解析;【解析】

(1)取扇形統計圖中所占百分比最大的年齡段即可;(1)先求出總體感到滿意的總人數,然后減去其它年齡段的人數即可,再補全條形圖.【詳解】(1)由扇形統計圖可得11~30歲的人數所占百分比最大為39%,所以,人數最多的年齡段是11~30歲;(1)根據題意,被調查的人中,總體印象感到滿意的有:400×83%=331人,31~40歲年齡段的滿意人數為:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,補全統計圖如圖.【點睛】本題考點:條形統計圖與扇形統計圖.20、小船到B碼頭的距離是10海里,A、B兩個碼頭間的距離是(10+10)海里【解析】試題分析:過P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.試題解析:如圖:過P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論