




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省宿州市埇橋區教育集團2023-2024學年中考適應性考試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.等式成立的x的取值范圍在數軸上可表示為(
)A. B. C. D.2.如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現在有如下4個結論:①≌;②;③∠GDE=45°;④DG=DE在以上4個結論中,正確的共有()個A.1個 B.2個 C.3個 D.4個3.如圖,以兩條直線l1,l2的交點坐標為解的方程組是()A. B. C. D.4.一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,朝上一面的數字是偶數的概率為().A. B. C. D.5.如圖,正六邊形ABCDEF內接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.16.如圖,在中,,,,點在以斜邊為直徑的半圓上,點是的三等分點,當點沿著半圓,從點運動到點時,點運動的路徑長為()A.或 B.或 C.或 D.或7.A種飲料比B種飲料單價少1元,小峰買了2瓶A種飲料和3瓶B種飲料,一共花了13元,如果設B種飲料單價為x元/瓶,那么下面所列方程正確的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=138.已知一元二次方程的兩個實數根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.69.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為()A.7 B.8 C.9 D.1010.甲、乙兩人加工一批零件,甲完成240個零件與乙完成200個零件所用的時間相同,已知甲比乙每天多完成8個零件.設乙每天完成x個零件,依題意下面所列方程正確的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知圓錐的母線SA的長為4,底面半徑OA的長為2,則圓錐的側面積等于.12.如圖,在平面直角坐標系中,函數y=x和y=﹣x的圖象分別為直線l1,l2,過點A1(1,﹣)作x軸的垂線交11于點A2,過點A2作y軸的垂線交l2于點A3,過點A3作x軸的垂線交l1于點A4,過點A4作y軸的垂線交l2于點A5,…依次進行下去,則點A2018的橫坐標為_____.13.某市居民用電價格如表所示:用電量不超過a千瓦時超過a千瓦時的部分單價(元/千瓦時)0.50.6小芳家二月份用電200千瓦時,交電費105元,則a=______.14.若關于的一元二次方程有實數根,則的取值范圍是________.15.已知關于x的方程x2+kx﹣3=0的一個根是x=﹣1,則另一根為_____.16.把多項式x3﹣25x分解因式的結果是_____17.某校體育室里有球類數量如下表:球類籃球排球足球數量354如果隨機拿出一個球(每一個球被拿出來的可能性是一樣的),那么拿出一個球是足球的可能性是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長.19.(5分)如圖,已知點D在反比例函數y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.(1)求反比例函數y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;(3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數.20.(8分)為了支持大學生創業,某市政府出臺了一項優惠政策:提供10萬元的無息創業貸款.小王利用這筆貸款,注冊了一家淘寶網店,招收5名員工,銷售一種火爆的電子產品,并約定用該網店經營的利潤,逐月償還這筆無息貸款.已知該產品的成本為每件4元,員工每人每月的工資為4千元,該網店還需每月支付其它費用1萬元.該產品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數關系如圖所示.求該網店每月利潤w(萬元)與銷售單價x(元)之間的函數表達式;小王自網店開業起,最快在第幾個月可還清10萬元的無息貸款?21.(10分)反比例函數y=(k≠0)與一次函數y=mx+b(m≠0)交于點A(1,2k﹣1).求反比例函數的解析式;若一次函數與x軸交于點B,且△AOB的面積為3,求一次函數的解析式.22.(10分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請根據圖中的信息,解答下列問題:(1)調查了________名學生;(2)補全條形統計圖;(3)在扇形統計圖中,“乒乓球”部分所對應的圓心角度數為________;(4)學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.23.(12分)觀察下列等式:第1個等式:a1=-1,第2個等式:a2=,第3個等式:a3==2-,第4個等式:a4=-2,…按上述規律,回答以下問題:請寫出第n個等式:an=__________.a1+a2+a3+…+an=_________.24.(14分)閱讀材料:小明在學習二次根式后,發現一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(其中均為整數),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當均為正整數時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結論,找一組正整數,填空:+=(+)2;(3)若,且均為正整數,求的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據二次根式有意義的條件即可求出的范圍.【詳解】由題意可知:,解得:,故選:.【點睛】考查二次根式的意義,解題的關鍵是熟練運用二次根式有意義的條件.2、C【解析】【分析】根據正方形的性質和折疊的性質可得AD=DF,∠A=∠GFD=90°,于是根據“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據全等三角形性質可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯誤的.【詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長是12,∴BE=EC=EF=6,設AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯誤;∴正確說法是①②③故選:C【點睛】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,有一定的難度.3、C【解析】
兩條直線的交點坐標應該是聯立兩個一次函數解析式所組成的方程組的解.因此本題需先根據兩直線經過的點的坐標,用待定系數法求出兩直線的解析式.然后聯立兩函數的解析式可得出所求的方程組.【詳解】直線l1經過(2,3)、(0,-1),易知其函數解析式為y=2x-1;直線l2經過(2,3)、(0,1),易知其函數解析式為y=x+1;因此以兩條直線l1,l2的交點坐標為解的方程組是:.故選C.【點睛】本題主要考查了函數解析式與圖象的關系,滿足解析式的點就在函數的圖象上,在函數的圖象上的點,就一定滿足函數解析式.函數圖象交點坐標為兩函數解析式組成的方程組的解.4、B【解析】
朝上的數字為偶數的有3種可能,再根據概率公式即可計算.【詳解】依題意得P(朝上一面的數字是偶數)=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.5、A【解析】
連接OM、OD、OF,由正六邊形的性質和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質、三角函數、勾股定理;熟練掌握正六邊形的性質,由三角函數求出OM是解決問題的關鍵.6、A【解析】
根據平行線的性質及圓周角定理的推論得出點M的軌跡是以EF為直徑的半圓,進而求出半徑即可得出答案,注意分兩種情況討論.【詳解】當點D與B重合時,M與F重合,當點D與A重合時,M與E重合,連接BD,FM,AD,EM,∵∴∵AB是直徑即∴∴點M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點M運動的路徑長為當時,同理可得點M運動的路徑長為故選:A.【點睛】本題主要考查動點的運動軌跡,掌握圓周角定理的推論,平行線的性質和弧長公式是解題的關鍵.7、A【解析】
要列方程,首先要根據題意找出題中存在的等量關系,由題意可得到:買A飲料的錢+買B飲料的錢=總印數1元,明確了等量關系再列方程就不那么難了.【詳解】設B種飲料單價為x元/瓶,則A種飲料單價為(x-1)元/瓶,根據小峰買了2瓶A種飲料和3瓶B種飲料,一共花了1元,可得方程為:2(x-1)+3x=1.故選A.【點睛】列方程題的關鍵是找出題中存在的等量關系,此題的等量關系為買A中飲料的錢+買B中飲料的錢=一共花的錢1元.8、B【解析】
根據根與系數的關系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計算即可.【詳解】根據題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系:若方程兩個為x1,x2,則x1+x2,x1?x2.9、B【解析】
根據三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.10、B【解析】
根據題意設出未知數,根據甲所用的時間=乙所用的時間,用時間列出分式方程即可.【詳解】設乙每天完成x個零件,則甲每天完成(x+8)個.即得,,故選B.【點睛】找出甲所用的時間=乙所用的時間這個關系式是本題解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、8π【解析】
圓錐的側面積就等于母線長乘底面周長的一半.依此公式計算即可.【詳解】側面積=4×4π÷2=8π.故答案為8π.【點睛】本題主要考查了圓錐的計算,正確理解圓錐的側面積的計算可以轉化為扇形的面積的計算,理解圓錐與展開圖之間的關系.12、1【解析】
根據題意可以發現題目中各點的坐標變化規律,從而可以解答本題.【詳解】解:由題意可得,A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,∵2018÷4=504…2,2018÷2=1009,∴點A2018的橫坐標為:1,故答案為1.【點睛】本題考查一次函數圖象上點的坐標特征,解答本題的關鍵是明確題意,找出題目中點的橫坐標的變化規律.13、150【解析】
根據題意可得等量關系:不超過a千瓦時的電費+超過a千瓦時的電費=105元;根據等量關系列出方程,解出a的值即可.【詳解】∵0.5×200=100<105,∴a<200.由題意得:0.5a+0.6(200-a)=105,解得:a=150.故答案為:150【點睛】此題主要考查了一元一次方程的應用,關鍵是正確找出題目中的等量關系,列出方程.14、【解析】
由題意可得,△=9-4m≥0,由此求得m的范圍.【詳解】∵關于x的一元二次方程x2-3x+m=0有實數根,∴△=9-4m≥0,求得m≤.故答案為:【點睛】本題考核知識點:一元二次方程根判別式.解題關鍵點:理解一元二次方程根判別式的意義.15、1【解析】
設另一根為x2,根據一元二次方程根與系數的關系得出-1?x2=-1,即可求出答案.【詳解】設方程的另一個根為x2,則-1×x2=-1,解得:x2=1,故答案為1.【點睛】本題考查了一元二次方程根與系數的關系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,那么x1+x2=-,x1x2=.16、x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.詳解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案為x(x+5)(x-5).點睛:此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.17、【解析】
先求出球的總數,再用足球數除以總數即為所求.【詳解】解:一共有球3+5+4=12(個),其中足球有4個,∴拿出一個球是足球的可能性=.【點睛】本題考查了概率,屬于簡單題,熟悉概率概念,列出式子是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)(2)證明見解析;(3)1.【解析】
(1)由PD切⊙O于點C,AD與過點C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質可得到,又因為tan∠ABC=,所以可得=,進而可得到=,設PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進而可建立關于k的方程,解方程求出k的值即可求出PC的長.【詳解】(1)證明:∵PD切⊙O于點C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點睛】此題考查了和圓有關的綜合性題目,用到的知識點有:切線的性質、相似三角形的判定與性質、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質.19、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點坐標可求得OA的長,再利用三角函數的定義可求得OC的長,可求得C、D點坐標,再利用待定系數法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設直線AC關系式為y=kx+b,∵過A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.20、(1)當4≤x≤6時,w1=﹣x2+12x﹣35,當6≤x≤8時,w2=﹣x2+7x﹣23;(2)最快在第7個月可還清10萬元的無息貸款.【解析】分析:(1)y(萬件)與銷售單價x是分段函數,根據待定系數法分別求直線AB和BC的解析式,又分兩種情況,根據利潤=(售價﹣成本)×銷售量﹣費用,得結論;(2)分別計算兩個利潤的最大值,比較可得出利潤的最大值,最后計算時間即可求解.詳解:(1)設直線AB的解析式為:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直線AB的解析式為:y=﹣x+8,同理代入B(6,2),C(8,1)可得直線BC的解析式為:y=﹣x+5,∵工資及其他費作為:0.4×5+1=3萬元,∴當4≤x≤6時,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,當6≤x≤8時,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)當4≤x≤6時,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴當x=6時,w1取最大值是1,當6≤x≤8時,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,當x=7時,w2取最大值是1.5,∴==6,即最快在第7個月可還清10萬元的無息貸款.點睛:本題主要考查學生利用待定系數法求解一次函數關系式,一次函數與一次不等式的應用,利用數形結合的思想,是一道綜合性較強的代數應用題,能力要求比較高.21、(1)y=;(2)y=﹣或y=【解析】試題分析:(1)把A(1,2k-1)代入y=即可求得結果;
(2)根據三角形的面積等于3,求得點B的坐標,代入一次函數y=mx+b即可得到結果.試題解析:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函數的解析式為:y=;(2)由(1)得k=1,∴A(1,1),設B(a,0),∴S△AOB=?|a|×1=3,∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函數的解析式為:y=x+,把A(1,1),B(6,0)代入y=mx+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北京豐臺區九年級中考二模英語試卷試題(含答案詳解)
- 軟件測試用例設計的最佳實踐試題及答案
- 車輛維修企業節能減排與可持續發展協議
- 軟件測試團隊協作的挑戰與試題及答案
- 2014年山東省日照市五蓮縣事業單位考試真題及答案
- 2025合同審核與簽訂流程規范
- 青年創業者心理素質與創新能力的培養
- 天然氣水合物開采技術設備可靠性評估與維護保養報告
- 流域生態保護補償機制的資金籌集與管理模式
- 2025年礦山無人作業技術安全風險評估與管控策略研究報告
- 極坐標法課件講解
- 2024年湖南省高考政治試卷真題(含答案)
- 2023年《畜牧獸醫綜合知識復習題及答案》
- 八年級語文下冊(部編版) 第四單元 經典演講-單元主題閱讀訓練(含解析)
- 2024新高考英語1卷試題及答案(含聽力原文)
- 2023-2024學年譯林版四年級英語下冊Unit8《How are you?》單元檢測卷(含聽力及答案)
- DL/T 5352-2018 高壓配電裝置設計規范
- 養老院食物中毒應急預案
- 國家開放大學《消費者行為學》形考任務實訓(六選一)參考答案
- AQ∕T 7009-2013 機械制造企業安全生產標準化規范
- JTG-C30-2002公路工程水文勘測設計規范-PDF解密
評論
0/150
提交評論