2024屆山西省呂梁市孝義市中考數學模擬預測題含解析_第1頁
2024屆山西省呂梁市孝義市中考數學模擬預測題含解析_第2頁
2024屆山西省呂梁市孝義市中考數學模擬預測題含解析_第3頁
2024屆山西省呂梁市孝義市中考數學模擬預測題含解析_第4頁
2024屆山西省呂梁市孝義市中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山西省呂梁市孝義市中考數學模擬預測題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點B旋轉得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為()A. B. C. D.2.單項式2a3b的次數是()A.2 B.3 C.4 D.53.已知反比例函數下列結論正確的是()A.圖像經過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當x>1時,y<14.已知,C是線段AB的黃金分割點,AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)5.如圖,AD為△ABC的中線,點E為AC邊的中點,連接DE,則下列結論中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB6.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元7.計算(—2)2-3的值是()A、1B、2C、—1D、—28.如圖,已知,那么下列結論正確的是()A. B. C. D.9.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數為()A.42° B.66° C.69° D.77°10.小明在學習了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使?ABCD為正方形(如圖),現有下列四種選法,你認為其中錯誤的是()A.①② B.②③ C.①③ D.②④11.如圖所示是由幾個完全相同的小正方體組成的幾何體的三視圖.若小正方體的體積是1,則這個幾何體的體積為()A.2 B.3 C.4 D.512.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在△ABC中,∠C=30°,∠A﹣∠B=30°,則∠A=_____.14.如圖是一個立體圖形的三種視圖,則這個立體圖形的體積(結果保留π)為______________.15.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發,以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數圖象如圖②所示,當P運動到BC中點時,△PAD的面積為______.16.數學家吳文俊院士非常重視古代數學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等”這一推論,如圖所示,若SEBMF=1,則SFGDN=_____.17.若一個扇形的圓心角為60°,面積為6π,則這個扇形的半徑為__________.18.如圖,直線經過、兩點,則不等式的解集為_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)甲乙兩件服裝的進價共500元,商場決定將甲服裝按30%的利潤定價,乙服裝按20%的利潤定價,實際出售時,兩件服裝均按9折出售,商場賣出這兩件服裝共獲利67元.求甲乙兩件服裝的進價各是多少元;由于乙服裝暢銷,制衣廠經過兩次上調價格后,使乙服裝每件的進價達到242元,求每件乙服裝進價的平均增長率;若每件乙服裝進價按平均增長率再次上調,商場仍按9折出售,定價至少為多少元時,乙服裝才可獲得利潤(定價取整數).20.(6分)如圖有A、B兩個大小均勻的轉盤,其中A轉盤被分成3等份,B轉盤被分成4等份,并在每一份內標上數字.小明和小紅同時各轉動其中一個轉盤,轉盤停止后(當指針指在邊界線時視為無效,重轉),若將A轉盤指針指向的數字記作一次函數表達式中的k,將B轉盤指針指向的數字記作一次函數表達式中的b.請用列表或畫樹狀圖的方法寫出所有的可能;求一次函數y=kx+b的圖象經過一、二、四象限的概率.21.(6分)某學校準備采購一批茶藝耗材和陶藝耗材.經查詢,如果按照標價購買兩種耗材,當購買茶藝耗材的數量是陶藝耗材數量的2倍時,購買茶藝耗材共需要18000元,購買陶藝耗材共需要12000元,且一套陶藝耗材單價比一套茶藝耗材單價貴150元.求一套茶藝耗材、一套陶藝耗材的標價分別是多少元?學校計劃購買相同數量的茶藝耗材和陶藝耗材.商家告知,因為周年慶,茶藝耗材的單價在標價的基礎上降價2元,陶藝耗材的單價在標價的基礎降價150元,該校決定增加采購數量,實際購買茶藝耗材和陶藝耗材的數量在原計劃基礎上分別增加了2.5%和,結果在結算時發現,兩種耗材的總價相等,求的值.22.(8分)已知,拋物線y=x2﹣x+與x軸分別交于A、B兩點(A點在B點的左側),交y軸于點F.(1)A點坐標為;B點坐標為;F點坐標為;(2)如圖1,C為第一象限拋物線上一點,連接AC,BF交于點M,若BM=FM,在直線AC下方的拋物線上是否存在點P,使S△ACP=4,若存在,請求出點P的坐標,若不存在,請說明理由;(3)如圖2,D、E是對稱軸右側第一象限拋物線上的兩點,直線AD、AE分別交y軸于M、N兩點,若OM?ON=,求證:直線DE必經過一定點.23.(8分)為了計算湖中小島上涼亭P到岸邊公路l的距離,某數學興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結果保留整數,參考數據:≈1.414,≈1.732)24.(10分)如圖,是等腰三角形,,.(1)尺規作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.25.(10分)先化簡,再求值:(﹣2)÷,其中x滿足x2﹣x﹣4=026.(12分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.()請直接寫出袋子中白球的個數.()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)27.(12分)如圖,已知AB是圓O的直徑,F是圓O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點E作ED⊥AF,交AF的延長線于點D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點G為AE上一點,求OG+EG最小值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

本題首先利用A點恰好落在邊CD上,可以求出A′C=BC′=1,又因為A′B=可以得出△A′BC為等腰直角三角形,即可以得出∠ABA′、∠DBD′的大小,然后將陰影部分利用切割法分為兩個部分來求,即面積ADA′和面積DA′D′【詳解】先連接BD,首先求得正方形ABCD的面積為,由分析可以求出∠ABA′=∠DBD′=45°,即可以求得扇形ABA′的面積為,扇形BDD′的面積為,面積ADA′=面積ABCD-面積A′BC-扇形面積ABA′=;面積DA′D′=扇形面積BDD′-面積DBA′-面積BA′D′=,陰影部分面積=面積DA′D′+面積ADA′=【點睛】熟練掌握面積的切割法和一些基本圖形的面積的求法是本題解題的關鍵.2、C【解析】分析:根據單項式的性質即可求出答案.詳解:該單項式的次數為:3+1=4故選C.點睛:本題考查單項式的次數定義,解題的關鍵是熟練運用單項式的次數定義,本題屬于基礎題型.3、B【解析】分析:直接利用反比例函數的性質進而分析得出答案.詳解:A.反比例函數y=,圖象經過點(﹣1,﹣1),故此選項錯誤;B.反比例函數y=,圖象在第一、三象限,故此選項正確;C.反比例函數y=,每個象限內,y隨著x的增大而減小,故此選項錯誤;D.反比例函數y=,當x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數的性質,正確掌握反比例函數的性質是解題的關鍵.4、C【解析】

根據黃金分割點的定義,知BC為較長線段;則BC=AB,代入數據即可得出BC的值.【詳解】解:由于C為線段AB=2的黃金分割點,且AC<BC,BC為較長線段;

則BC=2×=-1.

故答案為:-1.【點睛】本題考查了黃金分割,應該識記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.5、A【解析】

根據三角形中位線定理判斷即可.【詳解】∵AD為△ABC的中線,點E為AC邊的中點,

∴DC=BC,DE=AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=S△ABC,C一定成立;DE∥AB,D一定成立;故選A.【點睛】本題考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.6、D【解析】

設y與x之間的函數關系式為y=kπx2,由待定系數法就可以求出解析式,再求出x=6時y的值即可得.【詳解】解:根據題意設y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【點睛】本題考查了二次函數的應用,解答時求出函數的解析式是關鍵.7、A【解析】本題考查的是有理數的混合運算根據有理數的加法、乘方法則,先算乘方,再算加法,即得結果。解答本題的關鍵是掌握好有理數的加法、乘方法則。8、A【解析】

已知AB∥CD∥EF,根據平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準對應關系,避免錯選其他答案.9、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.10、B【解析】

A、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當②∠ABC=90°時,菱形ABCD是正方形,故此選項正確,不合題意;B、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當AC=BD時,這是矩形的性質,無法得出四邊形ABCD是正方形,故此選項錯誤,符合題意;C、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當③AC=BD時,菱形ABCD是正方形,故此選項正確,不合題意;D、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當④AC⊥BD時,矩形ABCD是正方形,故此選項正確,不合題意.故選C.11、C【解析】

根據左視圖發現最右上角共有2個小立方體,綜合以上,可以發現一共有4個立方體,主視圖和左視圖都是上下兩行,所以這個幾何體共由上下兩層小正方體組成,俯視圖有3個小正方形,所以下面一層共有3個小正方體,結合主視圖和左視圖的形狀可知上面一層只有最左邊有個小正方體,故這個幾何體由4個小正方體組成,其體積是4.故選C.【點睛】錯因分析

容易題,失分原因:未掌握通過三視圖還原幾何體的方法.12、D【解析】

畫出樹狀圖得出所有等可能的情況數,找出恰好是兩個紅球的情況數,即可求出所求的概率.【詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【點睛】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、90°.【解析】

根據三角形內角和得到∠A+∠B+∠C=180°,而∠C=30°,則可計算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把兩式相加消去∠B即可求得∠A的度數.【詳解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案為:90°.【點睛】本題考查了三角形內角和定理:三角形內角和是180°.主要用在求三角形中角的度數.①直接根據兩已知角求第三個角;②依據三角形中角的關系,用代數方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.14、250【解析】

從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查;圓柱體積公式=底面積×高.15、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據題意可知,當P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.16、1【解析】

根據從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等得SEBMF=SFGDN,得SFGDN.【詳解】∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.【點睛】本題考查面積的求解,解題的關鍵是讀懂題意.17、6【解析】設這個扇形的半徑為,根據題意可得:,解得:.故答案為.18、-1<X<2【解析】經過點A,∴不等式x>kx+b>-2的解集為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)甲服裝的進價為300元、乙服裝的進價為1元.(2)每件乙服裝進價的平均增長率為10%;(3)乙服裝的定價至少為296元.【解析】

(1)若設甲服裝的成本為x元,則乙服裝的成本為(500-x)元.根據公式:總利潤=總售價-總進價,即可列出方程.(2)利用乙服裝的成本為1元,經過兩次上調價格后,使乙服裝每件的進價達到242元,利用增長率公式求出即可;(3)利用每件乙服裝進價按平均增長率再次上調,再次上調價格為:242×(1+10%)=266.2(元),進而利用不等式求出即可.【詳解】(1)設甲服裝的成本為x元,則乙服裝的成本為(500-x)元,根據題意得:90%?(1+30%)x+90%?(1+20%)(500-x)-500=67,解得:x=300,500-x=1.答:甲服裝的成本為300元、乙服裝的成本為1元.(2)∵乙服裝的成本為1元,經過兩次上調價格后,使乙服裝每件的進價達到242元,∴設每件乙服裝進價的平均增長率為y,則,解得:=0.1=10%,=-2.1(不合題意,舍去).答:每件乙服裝進價的平均增長率為10%;(3)∵每件乙服裝進價按平均增長率再次上調∴再次上調價格為:242×(1+10%)=266.2(元)∵商場仍按9折出售,設定價為a元時0.9a-266.2>0解得:a>故定價至少為296元時,乙服裝才可獲得利潤.考點:一元二次方程的應用,不等式的應用,打折銷售問題20、(1)答案見解析;(2).【解析】

(1)k可能的取值為-1、-2、-3,b可能的取值為-1、-2、3、4,所以將所有等可能出現的情況用列表方式表示出來即可.(2)判斷出一次函數y=kx+b經過一、二、四象限時k、b的正負,在列表中找出滿足條件的情況,利用概率的基本概念即可求出一次函數y=kx+b經過一、二、四象限的概率.【詳解】解:(1)列表如下:所有等可能的情況有12種;(2)一次函數y=kx+b的圖象經過一、二、四象限時,k<0,b>0,情況有4種,則P==.21、(1)購買一套茶藝耗材需要450元,購買一套陶藝耗材需要600元;(2)的值為95.【解析】

(1)設購買一套茶藝耗材需要元,則購買一套陶藝耗材需要元,根據購買茶藝耗材的數量是陶藝耗材數量的2倍列方程求解即可;(2)設今年原計劃購買茶藝耗材和陶藝素材的數量均為,根據兩種耗材的總價相等列方程求解即可.【詳解】(1)設購買一套茶藝耗材需要元,則購買一套陶藝耗材需要元,根據題意,得.解方程,得.經檢驗,是原方程的解,且符合題意.答:購買一套茶藝耗材需要450元,購買一套陶藝耗材需要600元.(2)設今年原計劃購買茶藝耗材和陶藝素材的數量均為,由題意得:整理,得解方程,得,(舍去).的值為95.【點睛】本題考查了分式方程的應用及一元二次方程的應用,找出等量關系,列出方程是解答本題的關鍵,列方程解決實際問題注意要檢驗與實際情況是否相符.22、(1)(1,0),(3,0),(0,);(2)在直線AC下方的拋物線上不存在點P,使S△ACP=4,見解析;(3)見解析【解析】

(1)根據坐標軸上點的特點建立方程求解,即可得出結論;(2)在直線AC下方軸x上一點,使S△ACH=4,求出點H坐標,再求出直線AC的解析式,進而得出點H坐標,最后用過點H平行于直線AC的直線與拋物線解析式聯立求解,即可得出結論;(3)聯立直線DE的解析式與拋物線解析式聯立,得出,進而得出,,再由得出,進而求出,同理可得,再根據,即可得出結論.【詳解】(1)針對于拋物線,令x=0,則,∴,令y=0,則,解得,x=1或x=3,∴,綜上所述:,,;(2)由(1)知,,,∵BM=FM,∴,∵,∴直線AC的解析式為:,聯立拋物線解析式得:,解得:或,∴,如圖1,設H是直線AC下方軸x上一點,AH=a且S△ACH=4,∴,解得:,∴,過H作l∥AC,∴直線l的解析式為,聯立拋物線解析式,解得,∴,即:在直線AC下方的拋物線上不存在點P,使;(3)如圖2,過D,E分別作x軸的垂線,垂足分別為G,H,設,,直線DE的解析式為,聯立直線DE的解析式與拋物線解析式聯立,得,∴,,∵DG⊥x軸,∴DG∥OM,∴,∴,即,∴,同理可得∴,∴,即,∴,∴直線DE的解析式為,∴直線DE必經過一定點.【點睛】本題主要考查了二次函數的綜合應用,熟練掌握二次函數與一次函數的綜合應用,交點的求法,待定系數法求函數解析式等方法式解決本題的關鍵.23、涼亭P到公路l的距離為273.2m.【解析】

分析:作PD⊥AB于D,構造出Rt△APD與Rt△BPD,根據AB的長度.利用特殊角的三角函數值求解.【詳解】詳解:作PD⊥AB于D.設BD=x,則AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°?AD,即DB=PD=tan30°?AD=x=(1+x),解得:x≈273.2,∴PD=273.2.答:涼亭P到公路l的距離為273.2m.【點睛】此題考查的是直角三角形的性質,解答此題的關鍵是構造出兩個特殊角度的直角三角形,再利用特殊角的三角函數值解答.24、(1)作圖見解析(2)為等腰三角形【解析】

(1)作角平分線,以B點為圓心,任意長為半徑,畫圓弧;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進而判斷是否為等腰三角形.【詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【點睛】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關鍵所在.25、1【解析】

首先運用乘法分配律將所求的代數式去括號,然后再合并化簡,最后整體代入求解.【詳解】解:(﹣2)÷==x2﹣3﹣2x+2=x2﹣2x﹣1,∵x2﹣x﹣4=0,∴x2﹣2x=8,∴原式=8﹣1=1.【點睛】分式混合運算要注意先去括號;分子、分母能因式分解的先因式分解;除法要統一為乘法運算.注意整體代入思想在代數求值計算中的應用.26、(1)袋子中白球有2個;(2).【解析】試題分析:(1)設袋子中白球有x個,根據概率公式列方程解方程即可求得答案;(2)根據題意畫出樹狀圖,求得所有等可能的結果與兩次都摸到相同顏色

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論