2023-2024學年江蘇省南通市港閘區南通市北城中學中考數學模試卷含解析_第1頁
2023-2024學年江蘇省南通市港閘區南通市北城中學中考數學模試卷含解析_第2頁
2023-2024學年江蘇省南通市港閘區南通市北城中學中考數學模試卷含解析_第3頁
2023-2024學年江蘇省南通市港閘區南通市北城中學中考數學模試卷含解析_第4頁
2023-2024學年江蘇省南通市港閘區南通市北城中學中考數學模試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省南通市港閘區南通市北城中學中考數學模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.將一些半徑相同的小圓按如圖所示的規律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規律,第7個圖形的小圓個數是()A.56 B.58 C.63 D.722.如圖是一次數學活動課制作的一個轉盤,盤面被等分成四個扇形區域,并分別標有數字6、7、8、1.若轉動轉盤一次,轉盤停止后(當指針恰好指在分界線上時,不記,重轉),指針所指區域的數字是奇數的概率為()A.12 B.14 C.13.當函數y=(x-1)2-2的函數值y隨著x的增大而減小時,x的取值范圍是()A. B. C. D.x為任意實數4.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱5.下列四個幾何體中,左視圖為圓的是()A. B. C. D.6.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm7.不等式組的解在數軸上表示為()A. B. C. D.8.如果將拋物線向下平移1個單位,那么所得新拋物線的表達式是A. B. C. D.9.方程x2+2x﹣3=0的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣310.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知,正六邊形的邊長為1cm,分別以它的三個不相鄰的頂點為圓心,1cm長為半徑畫弧(如圖),則所得到的三條弧的長度之和為__________cm(結果保留π).12.如圖,△ABC與△DEF位似,點O為位似中心,若AC=3DF,則OE:EB=_____.13.太極揉推器是一種常見的健身器材.基本結構包括支架和轉盤,數學興趣小組的同學對某太極揉推器的部分數據進行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點C到立柱頂點B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點,且CD⊥FG,CE⊥MN,則兩個轉盤的最低點F,N距離地面的高度差為_____cm.(結果保留根號)14.計算:|-3|-1=__.15.在直角三角形ABC中,∠C=90°,已知sinA=3516.關于的一元二次方程有兩個相等的實數根,則________.三、解答題(共8題,共72分)17.(8分)關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22﹣x1x2=8,求m的值.18.(8分)已知關于x的一元二次方程x2﹣6x+(2m+1)=0有實數根.求m的取值范圍;如果方程的兩個實數根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍.19.(8分)如圖平行四邊形ABCD中,對角線AC,BD交于點O,EF過點O,并與AD,BC分別交于點E,F,已知AE=3,BF=5(1)求BC的長;(2)如果兩條對角線長的和是20,求三角形△AOD的周長.20.(8分)某企業信息部進行市場調研發現:信息一:如果單獨投資A種產品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關系的部分對應值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數關系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數關系式;(2)從所學過的一次函數、二次函數、反比例函數中確定哪種函數能表示yA與x之間的關系,并求出yA與x的函數關系式;(3)如果企業同時對A、B兩種產品共投資15萬元,請設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?21.(8分)為了了解初一年級學生每學期參加綜合實踐活動的情況,某區教育行政部門隨機抽樣調查了部分初一學生一個學期參加綜合實踐活動的天數,并用得到的數據繪制了統計圖①和圖②,請根據圖中提供的信息,回答下列問題:(I)本次隨機抽樣調查的學生人數為,圖①中的m的值為;(II)求本次抽樣調查獲取的樣本數據的眾數、中位數和平均數;(III)若該區初一年級共有學生2500人,請估計該區初一年級這個學期參加綜合實踐活動的天數大于4天的學生人數.22.(10分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽.從中抽取了部分學生成績(得分數取正整數,滿分為100分)進行統計,繪制統計頻數分布直方圖(未完成)和扇形圖如下,請解答下列問題:(1)A組的頻數a比B組的頻數b小24,樣本容量,a為:(2)n為°,E組所占比例為%:(3)補全頻數分布直方圖;(4)若成績在80分以上優秀,全校共有2000名學生,估計成績優秀學生有名.23.(12分)如圖,△ABC中,D是AB上一點,DE⊥AC于點E,F是AD的中點,FG⊥BC于點G,與DE交于點H,若FG=AF,AG平分∠CAB,連接GE,GD.求證:△ECG≌△GHD;24.如圖,一枚運載火箭從距雷達站C處5km的地面O處發射,當火箭到達點A,B時,在雷達站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求AC和AB的長(結果保留小數點后一位)(參考數據:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:第一個圖形的小圓數量=1×2+2=4;第二個圖形的小圓數量=2×3+2=8;第三個圖形的小圓數量=3×4+2=14;則第n個圖形的小圓數量=n(n+1)+2個,則第七個圖形的小圓數量=7×8+2=58個.考點:規律題2、A【解析】

轉盤中4個數,每轉動一次就要4種可能,而其中是奇數的有2種可能.然后根據概率公式直接計算即可【詳解】奇數有兩種,共有四種情況,將轉盤轉動一次,求得到奇數的概率為:P(奇數)=24=1【點睛】此題主要考查了幾何概率,正確應用概率公式是解題關鍵.3、B【解析】分析:利用二次函數的增減性求解即可,畫出圖形,可直接看出答案.詳解:對稱軸是:x=1,且開口向上,如圖所示,∴當x<1時,函數值y隨著x的增大而減小;故選B.點睛:本題主要考查了二次函數的性質,解題的關鍵是熟記二次函數的性質.4、A【解析】

由BD是∠ABC的角平分線,根據角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據兩直線平行,得到一對內錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內錯角相等,借助轉化的數學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.5、A【解析】

根據三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.6、C【解析】

利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【點睛】此題考查了圓錐的計算,用到的知識點為:圓錐側面展開圖的弧長=;圓錐的底面周長等于側面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.7、C【解析】

先解每一個不等式,再根據結果判斷數軸表示的正確方法.【詳解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴數軸表示的正確方法為C.故選C.【點睛】考核知識點:解不等式組.8、C【解析】

根據向下平移,縱坐標相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.9、B【解析】

本題可對方程進行因式分解,也可把選項中的數代入驗證是否滿足方程.【詳解】x2+2x-3=0,即(x+3)(x-1)=0,∴x1=1,x2=﹣3故選:B.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據方程的特點靈活選用合適的方法.本題運用的是因式分解法.10、B【解析】試題分析:結合三個視圖發現,應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】考點:弧長的計算;正多邊形和圓.分析:本題主要考查求正多邊形的每一個內角,以及弧長計算公式.解:方法一:先求出正六邊形的每一個內角==120°,所得到的三條弧的長度之和=3×=2πcm;方法二:先求出正六邊形的每一個外角為60°,得正六邊形的每一個內角120°,每條弧的度數為120°,三條弧可拼成一整圓,其三條弧的長度之和為2πcm.12、1:2【解析】

△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,位似圖形的對應頂點的連線平行或共線.13、10【解析】

作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【詳解】解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個轉盤的最低點F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【點睛】本題考查解直角三角形的應用,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.14、2【解析】

根據有理數的加減混合運算法則計算.【詳解】解:|﹣3|﹣1=3-1=2.故答案為2.【點睛】考查的是有理數的加減運算、乘除運算,掌握它們的運算法則是解題的關鍵.15、35【解析】試題分析:解答此題要利用互余角的三角函數間的關系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點:互余兩角三角函數的關系.16、-1.【解析】

根據根的判別式計算即可.【詳解】解:依題意得:∵關于的一元二次方程有兩個相等的實數根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點睛】本題考查了一元二次方程根的判別式,當=>0時,方程有兩個不相等的實數根;當==0時,方程有兩個相等的實數根;當=<0時,方程無實數根.三、解答題(共8題,共72分)17、(1);(2)m=﹣.【解析】

(1)根據已知和根的判別式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;(2)根據根與系數的關系得出x1+x2=﹣2,x1?x2=2m,把x1+xx12+x22﹣x1x2=8變形為(x1+x2)2﹣3x1x2=8,代入求出即可.【詳解】(1)∵關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數根,∴△=22﹣4×1×2m=4﹣8m>0,解得:即m的取值范圍是(2)∵x1,x2是一元二次方程x2+2x+2m=0的兩個根,∴x1+x2=﹣2,x1?x2=2m,∵x12+x22﹣x1x2=8,∴(x1+x2)2﹣3x1x2=8,∴(﹣2)2﹣3×2m=8,解得:【點睛】本題考查了根的判別式和根與系數的關系,能熟記根的判別式的內容和根與系數的關系的內容是解此題的關鍵.18、(1)m≤1;(2)3≤m≤1.【解析】試題分析:(1)根據判別式的意義得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根據根與系數的關系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的結論可確定滿足條件的m的取值范圍.試題解析:(1)根據題意得△=(-6)2-1(2m+1)≥0,解得m≤1;(2)根據題意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤1,所以m的范圍為3≤m≤1.19、(1)8;(2)1.【解析】

(1)由平行四邊形的性質和已知條件易證△AOE≌△COF,所以可得AE=CF=3,進而可求出BC的長;(2)由平行四邊形的性質:對角線互相平分可求出AO+OD的長,進而可求出三角形△AOD的周長.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,AO=CO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD的周長=AO+BO+AD=1.【點睛】本題考查了平行四邊形的性質和全等三角形的判定以及全等三角形的性質,能夠根據平行四邊形的性質證明三角形全等,再根據全等三角形的性質將所求的線段轉化為已知的線段是解題的關鍵.20、(1)yB=-0.2x2+1.6x(2)一次函數,yA=0.4x(3)該企業投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元【解析】

(1)用待定系數法將坐標(2,2.4)(4,3.2)代入函數關系式yB=ax2+bx求解即可;(2)根據表格中對應的關系可以確定為一次函數,通過待定系數法求得函數表達式;(3)根據等量關系“總利潤=投資A產品所獲利潤+投資B產品所獲利潤”列出函數關系式求得最大值【詳解】解:(1)yB=-0.2x2+1.6x,(2)一次函數,yA=0.4x,(3)設投資B產品x萬元,投資A產品(15-x)萬元,投資兩種產品共獲利W萬元,則W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴當x=3時,W最大值=7.8,答:該企業投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元.21、(I)150、14;(II)眾數為3天、中位數為4天,平均數為3.5天;(III)700人【解析】

(I)根據1天的人數及其百分比可得總人數,總人數減去其它天數的人數即可得m的值;(II)根據眾數、中位數和平均數的定義計算可得;(III)用總人數乘以樣本中5天、6天的百分比之和可得.【詳解】解:(I)本次隨機抽樣調查的學生人數為18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案為150、14;(II)眾數為3天、中位數為第75、76個數據的平均數,即平均數為=4天,平均數為=3.5天;(III)估計該區初一年級這個學期參加綜合實踐活動的天數大于4天的學生有2500×(18%+10%)=700人.【點睛】此題考查了條形統計圖,扇形統計圖,以及用樣本估計總體,弄清題意是解本題的關鍵.22、(1)200;16(2)126;12%(3)見解析(4)940【解析】分析:(1)由于A組的頻數比B組小24,而A組的頻率比B組小12%,則可計算出調查的總人數,然后計算a和b的值;(2)用360度乘以D組的頻率可得到n的值,根據百分比之和為1可得E組百分比;(3)計算出C和E組的頻數后補全頻數分布直方圖;(4)利用樣本估計總體,用2000乘以D組和E組的頻率和即可.本題解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論