2023-2024學年福建省廈門市思明區第六中學中考數學適應性模擬試題含解析_第1頁
2023-2024學年福建省廈門市思明區第六中學中考數學適應性模擬試題含解析_第2頁
2023-2024學年福建省廈門市思明區第六中學中考數學適應性模擬試題含解析_第3頁
2023-2024學年福建省廈門市思明區第六中學中考數學適應性模擬試題含解析_第4頁
2023-2024學年福建省廈門市思明區第六中學中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福建省廈門市思明區第六中學中考數學適應性模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算±的值為()A.±3 B.±9 C.3 D.92.﹣6的倒數是()A.﹣16 B.13.下面調查方式中,合適的是()A.調查你所在班級同學的體重,采用抽樣調查方式B.調查烏金塘水庫的水質情況,采用抽樣調査的方式C.調查《CBA聯賽》欄目在我市的收視率,采用普查的方式D.要了解全市初中學生的業余愛好,采用普查的方式4.設x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.165.二次函數y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)6.一球鞋廠,現打折促銷賣出330雙球鞋,比上個月多賣10%,設上個月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3307.若,則x-y的正確結果是()A.-1 B.1 C.-5 D.58.若A(﹣4,y1),B(﹣3,y2),C(1,y3)為二次函數y=x2﹣4x+m的圖象上的三點,則y1,y2,y3的大小關系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y29.下列四個幾何體,正視圖與其它三個不同的幾何體是()A. B.C. D.10.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F為DE中點,若點D在直線BC上運動,連接CF,則在點D運動過程中,線段CF的最小值是_____.12.菱形的兩條對角線長分別是方程的兩實根,則菱形的面積為______.13.如圖,一扇形紙扇完全打開后,外側兩竹條AB和AC的夾角為120°,AB長為25cm,貼紙部分的寬BD為15cm,若紙扇兩面貼紙,則貼紙的面積為_____.(結果保留π)14.如果關于x的方程x2+kx+34k2-3k+15.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____16.如圖,直線a,b被直線c所截,a∥b,∠1=∠2,若∠3=40°,則∠4等于________.17.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足為點D,以點D為圓心作⊙D,使得點A在⊙D外,且點B在⊙D內.設⊙D的半徑為r,那么r的取值范圍是_________.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大小.19.(5分)用你發現的規律解答下列問題.┅┅計算.探究.(用含有的式子表示)若的值為,求的值.20.(8分)自學下面材料后,解答問題。分母中含有未知數的不等式叫分式不等式。如:<0等。那么如何求出它們的解集呢?根據我們學過的有理數除法法則可知:兩數相除,同號得正,異號得負。其字母表達式為:若a>0,b>0,則>0;若a<0,b<0,則>0;若a>0,b<0,則<0;若a<0,b>0,則<0.反之:若>0,則或,(1)若<0,則___或___.(2)根據上述規律,求不等式>0的解集.21.(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點D,過點D作∠ABD=∠ADE,交AC于點E.(1)求證:DE為⊙O的切線.(2)若⊙O的半徑為,AD=,求CE的長.22.(10分)某商場計劃購進A,B兩種新型節能臺燈共100盞,這兩種臺燈的進價、售價如下表:類型價格進價(元/盞)售價(元/盞)A型3045B型5070(1)若商場預計進貨款為3500元,則這兩種臺燈各進多少盞.(2)若設商場購進A型臺燈m盞,銷售完這批臺燈所獲利潤為P,寫出P與m之間的函數關系式.(3)若商場規定B型燈的進貨數量不超過A型燈數量的4倍,那么A型和B型臺燈各進多少盞售完之后獲得利潤最多?此時利潤是多少元.23.(12分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積24.(14分)先化簡代數式:,再代入一個你喜歡的數求值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

∵(±9)2=81,∴±±9.故選B.2、A【解析】解:﹣6的倒數是﹣163、B【解析】

由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.【詳解】A、調查你所在班級同學的體重,采用普查,故A不符合題意;B、調查烏金塘水庫的水質情況,無法普查,采用抽樣調査的方式,故B符合題意;C、調查《CBA聯賽》欄目在我市的收視率,調查范圍廣適合抽樣調查,故C不符合題意;D、要了解全市初中學生的業余愛好,調查范圍廣適合抽樣調查,故D不符合題意;故選B.【點睛】本題考查了抽樣調查和全面調查的區別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.4、C【解析】

根據根與系數的關系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計算即可.【詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,

∴x1+x2=2,x1?x2=-5,

∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.

故選C.【點睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.5、B【解析】

由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.【點睛】考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).6、D【解析】解:設上個月賣出x雙,根據題意得:(1+10%)x=1.故選D.7、A【解析】由題意,得

x-2=0,1-y=0,

解得x=2,y=1.

x-y=2-1=-1,

故選:A.8、B【解析】

根據函數解析式的特點,其對稱軸為x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在對稱軸左側,圖象開口向上,利用y隨x的增大而減小,可判斷y3<y2<y1.【詳解】拋物線y=x2﹣4x+m的對稱軸為x=2,當x<2時,y隨著x的增大而減小,因為-4<-3<1<2,所以y3<y2<y1,故選B.【點睛】本題考查了二次函數的性質,二次函數圖象上點的坐標特征,熟練掌握二次函數的增減性是解題的關鍵.9、C【解析】

根據幾何體的三視圖畫法先畫出物體的正視圖再解答.【詳解】解:A、B、D三個幾何體的主視圖是由左上一個正方形、下方兩個正方形構成的,而C選項的幾何體是由上方2個正方形、下方2個正方形構成的,故選:C.【點睛】此題重點考查學生對幾何體三視圖的理解,掌握幾何體的主視圖是解題的關鍵.10、C【解析】

主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.【點睛】本題考查的知識點是截一個幾何體,解題的關鍵是熟練的掌握截一個幾何體.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】試題分析:當點A、點C和點F三點共線的時候,線段CF的長度最小,點F在AC的中點,則CF=1.12、2【解析】

解:x2﹣14x+41=0,則有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面積為:(6×1)÷2=2.菱形的面積為:2.故答案為2.點睛:本題考查菱形的性質.菱形的對角線互相垂直,以及對角線互相垂直的四邊形的面積的特點和根與系數的關系.13、πcm1.【解析】

求出AD,先分別求出兩個扇形的面積,再求出答案即可.【詳解】解:∵AB長為15cm,貼紙部分的寬BD為15cm,∴AD=10cm,∴貼紙的面積為S=S扇形ABC﹣S扇形ADE=(cm1),故答案為πcm1.【點睛】本題考查了扇形的面積計算,能熟記扇形的面積公式是解此題的關鍵.14、-【解析】

由方程有兩個實數根,得到根的判別式的值大于等于0,列出關于k的不等式,利用非負數的性質得到k的值,確定出方程,求出方程的解,代入所求式子中計算即可求出值.【詳解】∵方程x2+kx+34∴b2-4ac=k2-4(34k2-3k+92)=-2k2+12k-18=-2(k-3)∴k=3,代入方程得:x2+3x+94=(x+32)解得:x1=x2=-32則x12017x故答案為-23【點睛】此題考查了根的判別式,非負數的性質,以及配方法的應用,求出k的值是本題的突破點.15、【解析】

利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質、勾股定理、直角三角形斜邊中線的性質、銳角三角函數等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考常考題型.16、70°【解析】

試題分析:由平角的定義可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因為a∥b,所以∠4=∠1=70°.故答案為70°.考點:角的計算;平行線的性質.17、.【解析】

先根據勾股定理求出AB的長,進而得出CD的長,由點與圓的位置關系即可得出結論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD?BD=CD2,設AD=x,BD=1-x.解得x=,∴點A在圓外,點B在圓內,r的范圍是,故答案為.【點睛】本題考查的是點與圓的位置關系,熟知點與圓的三種位置關系是解答此題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見試題解析;(2)90°.【解析】試題分析:(1)由兩邊對應成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據相似三角形的對應角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.試題解析:(1)∵CD是邊AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考點:相似三角形的判定與性質.19、解:(1);(2);(3)n=17.【解析】

(1)、根據給出的式子將各式進行拆開,然后得出答案;(2)、根據給出的式子得出規律,然后根據規律進行計算;(3)、根據題意將式子進行展開,然后列出關于n的一元一次方程,從而得出n的值.【詳解】(1)原式=1?+?+?+?+?=1?=.故答案為;(2)原式=1?+?+?+…+?=1?=故答案為;(3)+++…+=(1?+?+?+…+?)=(1?)==解得:n=17.考點:規律題.20、(1)或;(2)x>2或x<?1.【解析】

(1)根據兩數相除,異號得負解答;(2)先根據同號得正把不等式轉化成不等式組,然后根據一元一次不等式組的解法求解即可.【詳解】(1)若>0,則或;故答案為:或;(2)由上述規律可知,不等式轉化為或,所以,x>2或x<?1.【點睛】此題考查一元一次不等式組的應用,解題關鍵在于掌握掌握運算法則.21、(1)證明見解析;(2)CE=1.【解析】

(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根據切線的判定推出即可;(2)求出CD,AC的長,證△CDE∽△CAD,得出比例式,求出結果即可.【詳解】(1)連接OD,∵AB是直徑,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD為半徑,∴DE為⊙O的切線;(2)∵⊙O的半徑為,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,∴∠EDC=∠ADO,∵OA=OD,∴∠ADO=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠EDC=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴=,解得:CE=1.【點睛】本題考查了等腰三角形的性質與切線的判定,解題的關鍵是熟練的掌握等腰三角形的性質與切線的判定.22、(1)應購進A型臺燈75盞,B型臺燈25盞;(2)P=﹣5m+2000;(3)商場購進A型臺燈20盞,B型臺燈80盞,銷售完這批臺燈時獲利最多,此時利潤為1900元.【解析】

(1)設商場應購進A型臺燈x盞,表示出B型臺燈為(100-x)盞,然后根據進貨款=A型臺燈的進貨款+B型臺燈的進貨款列出方程求解即可;(2)根據題意列出方程即可;

(3)設商場銷售完這批臺燈可獲利y元,根據獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據一次函數的增減性求出獲利的最大值.【詳解】解:(1)設商場應購進A型臺燈x盞,則B型臺燈為(100﹣x)盞,根據題意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:應購進A型臺燈75盞,B型臺燈25盞;(2)設商場銷售完這批臺燈可獲利P元,則P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論