




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,則下列結論錯誤的是()A.函數的最小正周期為πB.函數的圖象關于點對稱C.函數在上單調遞增D.函數的圖象可由的圖象向左平移個單位長度得到2.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.3.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.4.已知,則的值構成的集合是()A. B. C. D.5.已知,且,則的值為()A. B. C. D.6.若函數在處有極值,則在區間上的最大值為()A. B.2 C.1 D.37.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或8.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.9.拋物線的準線方程是,則實數()A. B. C. D.10.若不相等的非零實數,,成等差數列,且,,成等比數列,則()A. B. C.2 D.11.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.212.執行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數值的個數為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.點是曲線()圖象上的一個定點,過點的切線方程為,則實數k的值為______.14.記為數列的前項和.若,則______.15.已知是夾角為的兩個單位向量,若,,則與的夾角為______.16.《九章算術》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數物價各幾何?”借用我們現在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數和物品價格?答:一共有_____人;所合買的物品價格為_______元.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市環保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調查的100人的得分(滿分:100分)數據,統計結果如表所示:組別男235151812女051010713(1)若規定問卷得分不低于70分的市民稱為“環保關注者”,請完成答題卡中的列聯表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環保關注者”與性別有關?(2)若問卷得分不低于80分的人稱為“環保達人”.視頻率為概率.①在我市所有“環保達人”中,隨機抽取3人,求抽取的3人中,既有男“環保達人”又有女“環保達人”的概率;②為了鼓勵市民關注環保,針對此次的調查制定了如下獎勵方案:“環保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:紅包金額(單位:元)1020概率現某市民要參加此次問卷調查,記(單位:元)為該市民參加間卷調查獲得的紅包金額,求的分布列及數學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)在平面直角坐標系中,直線的參數方程為(為參數),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.19.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.20.(12分)每年的寒冷天氣都會帶熱“御寒經濟”,以交通業為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網上預約出租車出行,出租車公司的訂單數就會增加.下表是某出租車公司從出租車的訂單數據中抽取的5天的日平均氣溫(單位:℃)與網上預約出租車訂單數(單位:份);日平均氣溫(℃)642網上預約訂單數100135150185210(1)經數據分析,一天內平均氣溫與該出租車公司網約訂單數(份)成線性相關關系,試建立關于的回歸方程,并預測日平均氣溫為時,該出租車公司的網約訂單數;(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數據當成真實的數據,根據表格數據,則從這5天中任意選取2天,求恰有1天網約訂單數不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:21.(12分)已知函數.(1)若在上是減函數,求實數的最大值;(2)若,求證:.22.(10分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點O,VO⊥平面ABCD,E是棱VC的中點.(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.2、A【解析】
本道題繪圖發現三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.3、D【解析】
如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關系,意在考查學生的空間想象能力和計算能力.4、C【解析】
對分奇數、偶數進行討論,利用誘導公式化簡可得.【詳解】為偶數時,;為奇數時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.5、A【解析】
由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.6、B【解析】
根據極值點處的導數為零先求出的值,然后再按照求函數在連續的閉區間上最值的求法計算即可.【詳解】解:由已知得,,,經檢驗滿足題意.,.由得;由得或.所以函數在上遞增,在上遞減,在上遞增.則,,由于,所以在區間上的最大值為2.故選:B.【點睛】本題考查了導數極值的性質以及利用導數求函數在連續的閉區間上的最值問題的基本思路,屬于中檔題.7、D【解析】
設,,根據和拋物線性質得出,再根據雙曲線性質得出,,最后根據余弦定理列方程得出、間的關系,從而可得出離心率.【詳解】過分別向軸和拋物線的準線作垂線,垂足分別為、,不妨設,,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質,考查運算求解能力,屬于中檔題.8、A【解析】
根據題意,可得幾何體,利用體積計算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點睛】本題考查了常見幾何體的三視圖和體積計算,屬于基礎題.9、C【解析】
根據準線的方程寫出拋物線的標準方程,再對照系數求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.10、A【解析】
由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數列,所以,又,,成等比數列,所以,消去得,所以,解得或,因為,,是不相等的非零實數,所以,此時,所以.故選:A【點睛】本題考查了等差等比數列的綜合應用,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.11、A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.12、C【解析】試題分析:根據題意,當時,令,得;當時,令,得,故輸入的實數值的個數為1.考點:程序框圖.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
求出導函數,由切線斜率為4即導數為4求出切點橫坐標,再由切線方程得縱坐標后可求得.【詳解】設,由題意,∴,,,即,∴,.故答案為:1.【點睛】本題考查導數的幾何意義,函數圖象某點處的切線的斜率就是該點處導數值.本題屬于基礎題.14、1【解析】
由已知數列遞推式可得數列是以16為首項,以為公比的等比數列,再由等比數列的前項和公式求解.【詳解】由,得,.且,則,即.數列是以16為首項,以為公比的等比數列,則.故答案為:1.【點睛】本題主要考查數列遞推式,考查等比數列的前項和,意在考查學生對這些知識的理解掌握水平.15、【解析】
依題意可得,再根據求模,求數量積,最后根據夾角公式計算可得;【詳解】解:因為是夾角為的兩個單位向量所以,又,所以,,所以,因為所以;故答案為:【點睛】本題考查平面向量的數量積的運算律,以及夾角的計算,屬于基礎題.16、753【解析】
根據物品價格不變,可設共有x人,列出方程求解即可【詳解】設共有人,由題意知,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數學文化及一元一次方程的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)不能;(2)①;②分布列見解析,.【解析】
(1)根據題目所給的數據可求2×2列聯表即可;計算K的觀測值K2,對照題目中的表格,得出統計結論.(2)由相互獨立事件的概率可得男“環保達人”又有女“環保達人”的概率:P=1﹣()3﹣()3,解出X的分布列及數學期望E(X)即可;【詳解】(1)由圖中表格可得列聯表如下:非“環保關注者”是“環保關注者”合計男104555女153045合計2575100將列聯表中的數據代入公式計算得K”的觀測值,所以在犯錯誤的概率不超過0.05的前提下,不能認為是否為“環保關注者”與性別有關.(2)視頻率為概率,用戶為男“環保達人”的概率為.為女“環保達人”的概率為,①抽取的3名用戶中既有男“環保達人”又有女“環保達人”的概率為;②的取值為10,20,30,40.,,,,所以的分布列為10203040.【點睛】本題考查了獨立性檢驗的應用問題,考查了概率分布列和期望,計算能力的應用問題,是中檔題目.18、(1);(2).【解析】
(1)將直線的參數方程化為直角坐標方程,由點到直線距離公式可求得圓心到直線距離,結合垂徑定理即可求得的長;(2)將的極坐標化為直角坐標,將直線方程與圓的方程聯立,求得直線與圓的兩個交點坐標,由中點坐標公式求得的坐標,再根據兩點間距離公式即可求得.【詳解】(1)直線的參數方程為(為參數),化為直角坐標方程為,即直線與曲線交于兩點.則圓心坐標為,半徑為1,則由點到直線距離公式可知,所以.(2)點的極坐標為,化為直角坐標可得,直線的方程與曲線的方程聯立,化簡可得,解得,所以兩點坐標為,所以,由兩點間距離公式可得.【點睛】本題考查了參數方程與普通方程轉化,極坐標與直角坐標的轉化,點到直線距離公式應用,兩點間距離公式的應用,直線與圓交點坐標求法,屬于基礎題.19、(1);(2).【解析】
(1)利用余弦定理得出關于的二次方程,結合,可求出的值;(2)利用兩角和的余弦公式以及誘導公式可求出的值,利用同角三角函數的基本關系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數的基本關系以及二倍角公式求值,考查計算能力,屬于中等題.20、(1),232;(2)【解析】
(1)根據公式代入求解;(2)先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當時,.所以可預測日平均氣溫為時該出租車公司的網約訂單數約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個基本事件,其中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷鏈物流速凍加工項目實施方案
- 物理基礎概念與實驗操作知識考核
- 鄉村公共衛生服務現狀與發展趨勢分析
- 校園飲水安全現狀分析與挑戰
- 物理實驗設計與操作:《高中物理實驗課程教案》
- 地方政府在落實失業保險穩崗政策中的創新措施
- 移動應用開發基礎知識點習題
- 生物學遺傳學知識點詳解與習題集
- 2025年藝術審美與創造力發展考試試題及答案
- 2025年無人機技術應用與管理培訓考試題及答案
- 2025年廣東省佛山市南海區中考一模英語試題(原卷版+解析版)
- 鎮江市京口區2024-2025學年小升初總復習數學測試卷含解析
- 不斷提升法治素養課件
- 不坐班申請書
- 中國土壤調理劑行業市場現狀調查及前景戰略研判報告
- 防火門維護與保養流程
- 《中國聯通IPv6培訓》課件
- 【MOOC】《Python語言程序設計》(東北大學)中國大學慕課答案
- 2024年黑龍江省《輔警招聘考試必刷500題》考試題庫附答案(滿分必刷)
- 2025年廣西宏桂集團招聘筆試參考題庫含答案解析
- 管道工程圖畫法基礎入門
評論
0/150
提交評論