




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
揚州市揚州中學新高考仿真模擬數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.2.設實數、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.143.某公園新購進盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.4.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.905.已知,,,則()A. B. C. D.6.已知正方體的棱長為1,平面與此正方體相交.對于實數,如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結論中,一定正確的是A. B.C. D.7.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.8.已知數列為等差數列,為其前項和,,則()A. B. C. D.9.正三棱錐底面邊長為3,側棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.10.對于函數,定義滿足的實數為的不動點,設,其中且,若有且僅有一個不動點,則的取值范圍是()A.或 B.C.或 D.11.某三棱錐的三視圖如圖所示,網格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.12.拋物線的焦點為,準線為,,是拋物線上的兩個動點,且滿足,設線段的中點在上的投影為,則的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩個單位向量滿足,則向量與的夾角為_____________.14.若四棱錐的側面內有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.15.為了抗擊新型冠狀病毒肺炎,某醫藥公司研究出一種消毒劑,據實驗表明,該藥物釋放量與時間的函數關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過______分鐘人方可進入房間.16.已知為正實數,且,則的最小值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.18.(12分)11月,2019全國美麗鄉村籃球大賽在中國農村改革的發源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經過1輪投球,記甲的得分為,求的分布列;(2)若經過輪投球,用表示經過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規定,經過計算機計算可估計得,請根據①中的值分別寫出a,c關于b的表達式,并由此求出數列的通項公式.19.(12分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數方程為(為參數),與交于,兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設點;若、、成等比數列,求的值20.(12分)已知函數.(1)當時,求函數的值域.(2)設函數,若,且的最小值為,求實數的取值范圍.21.(12分)十八大以來,黨中央提出要在2020年實現全面脫貧,為了實現這一目標,國家對“新農合”(新型農村合作醫療)推出了新政,各級財政提高了對“新農合”的補助標準.提高了各項報銷的比例,其中門診報銷比例如下:表1:新農合門診報銷比例醫院類別村衛生室鎮衛生院二甲醫院三甲醫院門診報銷比例60%40%30%20%根據以往的數據統計,李村一個結算年度門診就診人次情況如下:表2:李村一個結算年度門診就診情況統計表醫院類別村衛生室鎮衛生院二甲醫院三甲醫院一個結算年度內各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結算年度每人次到村衛生室、鎮衛生院、二甲醫院、三甲醫院門診平均費用分別為50元、100元、200元、500元.若李村一個結算年度內去門診就診人次為2000人次.(Ⅰ)李村在這個結算年度內去三甲醫院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結算年度內門診就診人次占全村總就診人次的比例視為概率,求李村這個結算年度每人次用于門診實付費用(報銷后個人應承擔部分)的分布列與期望.22.(10分)已知集合,.(1)若,則;(2)若,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題2、D【解析】
做出滿足條件的可行域,根據圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據圖象,當目標函數過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區域,利用數形結合求線性目標函數的最值,屬于基礎題.3、B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開有,扣除郁金香在兩邊有,即可求出結論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個位置中有種,根據分步乘法計數原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個位置中有,根據分步計數原理有,所以共有種.故選:B.【點睛】本題考查排列應用問題、分步乘法計數原理,不相鄰問題插空法是解題的關鍵,屬于中檔題.4、A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.5、B【解析】
利用指數函數和對數函數的單調性,將數據和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數函數和對數函數的單調性比較大小,屬基礎題.6、B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.7、C【解析】
如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.8、B【解析】
利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【詳解】由等差數列的性質可得,.故選:B.【點睛】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.9、D【解析】
由側棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關系.掌握正棱錐性質是解題關鍵.10、C【解析】
根據不動點的定義,利用換底公式分離參數可得;構造函數,并討論的單調性與最值,畫出函數圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當時,,則在內單調遞增;當時,,則在內單調遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點,可得得或,解得或.故選:C【點睛】本題考查了函數新定義的應用,由導數確定函數的單調性與最值,分離參數法與構造函數方法的應用,屬于中檔題.11、C【解析】
作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.12、B【解析】
試題分析:設在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質.【名師點晴】在直線與拋物線的位置關系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常常考慮用拋物線的定義進行問題的轉化.象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.14、【解析】
二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數k,可得,由此可得,則由可求k值.【詳解】解:如圖,設二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結構特征,由四棱錐的側面與底面的夾角求參數值,屬于中檔題.15、240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數的應用,屬于中檔題.16、【解析】
,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當且僅當,即時,等號成立.故答案為:【點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)在中,計算出的值,可得出的值,進而可得出的值,由此可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線方程與橢圓方程聯立,列出韋達定理,根據已知條件得出,利用韋達定理和斜率公式化簡得出與所滿足的關系式,代入直線的方程,即可得出直線所過定點的坐標.【詳解】(1)在中,,,,,,,,因此,橢圓的標準方程為;(2)由題不妨設,設點,聯立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中直線過定點的問題,考查計算能力,屬于中等題.18、(1)分布列見解析;(2)①;②,.【解析】
(1)經過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨立,計算概率后可得分布列;(2)由(1)得,由兩輪的得分可計算出,計算時可先計算出經過2輪后甲的得分的分布列(的取值為),然后結合的分布列和的分布可計算,由,代入,得兩個方程,解得,從而得到數列的遞推式,變形后得是等比數列,由等比數列通項公式得,然后用累加法可求得.【詳解】(1)記一輪投球,甲命中為事件,乙命中為事件,相互獨立,由題意,,甲的得分的取值為,,,,∴的分布列為:-101(2)由(1),,同理,經過2輪投球,甲的得分取值:記,,,則,,,,由此得甲的得分的分布列為:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴數列是等比數列,公比為,首項為,∴.∴.【點睛】本題考查隨機變量的概率分布列,考查相互獨立事件同時發生的概率,考查由數列的遞推式求通項公式,考查學生的轉化與化歸思想,本題難點在于求概率分布列,特別是經過2輪投球后甲的得分的概率分布列,這里可用列舉法寫出各種可能,然后由獨立事件的概率公式計算出概率.19、(1)曲線的直角坐標方程為,直線的普通方程為;(2)【解析】
(1)由極坐標與直角坐標的互化公式和參數方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;(2)把的參數方程代入拋物線方程中,利用韋達定理得,,可得到,根據因為,,成等比數列,列出方程,即可求解.【詳解】(1)由題意,曲線的極坐標方程可化為,又由,可得曲線的直角坐標方程為,由直線的參數方程為(為參數),消去參數,得,即直線的普通方程為;(2)把的參數方程代入拋物線方程中,得,由,設方程的兩根分別為,,則,,可得,.所以,,.因為,,成等比數列,所以,即,則,解得解得或(舍),所以實數.【點睛】本題主要考查了極坐標方程與直角坐標方程,以及參數方程與普通方程的互化,以及直線參數方程的應用,其中解答中熟記互化公式,合理應用直線的參數方程中參數的幾何意義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(1);(2).【解析】
(1)令,求出的范圍,再由指數函數的單調性,即可求出結論;(2)對分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關系,求出的值,進而求出的取值關系.【詳解】(1)當時,,令,∵∴,而是增函數,∴,∴函數的值域是.(2)當時,則在上單調遞減,在上單調遞增,所以的最小值為,在上單調遞增,最小值為,而的最小值為,所以這種情況不可能.當時,則在上單調遞減且沒有最小值,在上單調遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實數的取值范圍是.【點睛】本題考查復合函數的值域與分段函數的最值,熟練掌握二次函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自動控制原理(第2版)(余成波-張蓮-胡曉倩)習題全解及MATLAB實驗-第1、2章習題解答
- 計量管理制度范文
- 湖南省株洲市攸縣第三中學2024-2025學年高三下學期5月期中地理試題(含答案)
- 設備操作規程匯編
- 高一年級5月月考地理 試題
- 幼兒園 疫情防控主題班會教案
- 建筑施工特種作業-建筑起重機械安裝拆卸工(塔式起重機)真題庫-3
- 建筑施工特種作業-建筑焊工真題庫-5
- 廈門物理初中題目及答案
- 日語初級助詞題目及答案
- 醫院安保人員培訓實施方案
- 基于眼動追蹤的心理診斷與評估
- 浙江省紹興市2023-2024學年高一下學期期末考試政治試題
- 車輛安全檢查操作規范手冊
- 《今天我來洗碗筷》(教案)-二年級上冊勞動人教版
- 2024年研究生考試考研植物生理學與生物化學(414)試題與參考答案
- 2024版上海應屆畢業生落戶協議離職賠錢
- 便利店門店運營與管理實務考核試卷
- 光伏發電工程建設標準工藝手冊(2023版)
- MAM6090空壓 機微電腦控制器說明書
- 2024年中國東航行測筆試題庫
評論
0/150
提交評論