




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.12.定義在上的函數與其導函數的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數的單調遞減區間是()A. B. C. D.3.波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.4.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.5.若復數是純虛數,則()A.3 B.5 C. D.6.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數據的分組依次為,若低于60分的人數是18人,則該班的學生人數是()A.45 B.50 C.55 D.607.已知,,若,則實數的值是()A.-1 B.7 C.1 D.1或78.已知類產品共兩件,類產品共三件,混放在一起,現需要通過檢測將其區分開來,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件類產品或者檢測出3件類產品時,檢測結束,則第一次檢測出類產品,第二次檢測出類產品的概率為()A. B. C. D.9.已知集合,集合,則等于()A. B.C. D.10.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.311.我國古代數學名著《九章算術》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺12.在三角形中,,,求()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,則第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為_____________.14.如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則的最小值為.15.在的二項展開式中,所有項的系數的和為________16.已知是夾角為的兩個單位向量,若,,則與的夾角為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列和滿足:.(1)求證:數列為等比數列;(2)求數列的前項和.18.(12分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點,且平面平面ABCD.(1)證明:平面PNB;(2)問棱PA上是否存在一點E,使平面DEM,求的值19.(12分)在平面直角坐標系中,曲線C的參數方程為(為參數).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.(1)求曲線C的極坐標方程;(2)直線(t為參數)與曲線C交于A,B兩點,求最大時,直線l的直角坐標方程.20.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.21.(12分)如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點E,F分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.求證:(1)直線平面EFG;(2)直線平面SDB.22.(10分)等差數列的公差為2,分別等于等比數列的第2項,第3項,第4項.(1)求數列和的通項公式;(2)若數列滿足,求數列的前2020項的和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據題意,求導后結合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據導數的幾何意義得:,即切線斜率,當且僅當等號成立,所以上任意一點處的切線斜率的最小值為3.故選:A.【點睛】本題考查導數的幾何意義的應用以及運用基本不等式求最值,考查計算能力.2、B【解析】
先辨別出圖象中實線部分為函數的圖象,虛線部分為其導函數的圖象,求出函數的導數為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數的圖象,則該函數只有一個極值點,但其導函數圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數的圖象,則該函數有兩個極值點,則其導函數圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數的單調遞減區間為.故選:B.【點睛】本題考查利用圖象求函數的單調區間,同時也考查了利用圖象辨別函數與其導函數的圖象,考查推理能力,屬于中等題.3、D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.4、D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.5、C【解析】
先由已知,求出,進一步可得,再利用復數模的運算即可【詳解】由z是純虛數,得且,所以,.因此,.故選:C.【點睛】本題考查復數的除法、復數模的運算,考查學生的運算能力,是一道基礎題.6、D【解析】
根據頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據樣本容量求出班級人數.【詳解】根據頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數)是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題7、C【解析】
根據平面向量數量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數量積的坐標運算,屬于基礎題.8、D【解析】
根據分步計數原理,由古典概型概率公式可得第一次檢測出類產品的概率,不放回情況下第二次檢測出類產品的概率,即可得解.【詳解】類產品共兩件,類產品共三件,則第一次檢測出類產品的概率為;不放回情況下,剩余4件產品,則第二次檢測出類產品的概率為;故第一次檢測出類產品,第二次檢測出類產品的概率為;故選:D.【點睛】本題考查了分步乘法計數原理的應用,古典概型概率計算公式的應用,屬于基礎題.9、B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.10、B【解析】
設直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數,即可求得結果.【詳解】設,(,).易知直線l的斜率存在且不為0,設為,則直線l的方程為.與拋物線方程聯立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關系,考查韋達定理及向量的坐標之間的關系,考查計算能力,屬于中檔題.11、A【解析】
根據三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.12、A【解析】
利用正弦定理邊角互化思想結合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應用,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,由此能求出概率.【詳解】解:從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,分別為:,,,,,,,.所以第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為.故答案為.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎知識,屬于基礎題.14、.【解析】.15、1【解析】
設,令,的值即為所有項的系數之和。【詳解】設,令,所有項的系數的和為。【點睛】本題主要考查二項式展開式所有項的系數的和的求法─賦值法。一般地,對于,展開式各項系數之和為,注意與“二項式系數之和”區分。16、【解析】
依題意可得,再根據求模,求數量積,最后根據夾角公式計算可得;【詳解】解:因為是夾角為的兩個單位向量所以,又,所以,,所以,因為所以;故答案為:【點睛】本題考查平面向量的數量積的運算律,以及夾角的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)根據題目所給遞推關系式得到,由此證得數列為等比數列.(2)由(1)求得數列的通項公式,判斷出,由此利用裂項求和法求得數列的前項和.【詳解】(1)所以數列是以3為首項,以3為公比的等比數列.(2)由(1)知,∴為常數列,且,∴,∴∴【點睛】本小題主要考查根據遞推關系式證明等比數列,考查裂項求和法,屬于中檔題.18、(1)證明見解析;(2)存在,.【解析】
(1)根據題意證出,,再由線面垂直的判定定理即可證出.(2)連接AC交DM于點Q,連接EQ,利用線面平行的性質定理可得,從而可得,在正方形ABCD中,由即可求解.【詳解】(1)證明:在正方形ABCD中,M,N分別是AB,AD的中點,∴,,.∴.∴.又,∴,∴.∵為等邊三角形,N是AD的中點,∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如圖,連接AC交DM于點Q,連接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在點E,使平面DEM,此時,E是棱A的靠近點A的三等分點.【點睛】本題考查了線面垂直的判定定理、線面平行的性質定理,考查了學生的推理能力以及空間想象能力,屬于空間幾何中的基礎題.19、(1);(2).【解析】
(1)利用消去參數,得到曲線的普通方程,再將,代入普通方程,即可求出結論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數方程(為參數),可得曲線C的普通方程為,因為,所以曲線C的極坐標方程為,即.(2)因為直線(t為參數)表示的是過點的直線,曲線C的普通方程為,所以當最大時,直線l經過圓心.直線l的斜率為,方程為,所以直線l的直角坐標方程為.【點睛】本題考查參數方程與普通方程互化、直角坐標方程與極坐標方程互化、直線與曲線的位置關系,考查化歸和轉化思想,屬于中檔題.20、(1)(2)【解析】
(1)利用余弦定理可得的長;(2)利用面積得出,結合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時一般選用正弦定理,已知邊較多時一般選用余弦定理.21、(1)見解析(2)見解析【解析】
(1)連接AC、BD交于點O,交EF于點H,連接GH,再證明即可.(2)證明與即可.【詳解】(1)連接AC、BD交于點O,交EF于點H,連接GH,所以O為AC的中點,H為OC的中點,由E、F為DC、BC的中點,再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因為側面底面ABCD,由面面垂直的性質定理可知平面ABCD,所以,因為底面ABCD是菱形,所以,因為,所以平面SDB.【點睛】本題考查線面平行與垂直的證明.需要根據題意利用等比例以及余弦定理勾股定理等證明.屬于中檔題.22、(1),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆山東省淄博市臨淄區邊河鄉中學英語八年級第二學期期末教學質量檢測模擬試題含答案
- 公文請示說課課件
- 公司管理課件
- 公關禮儀說課課件教案
- 廣東省東莞市信義學校2025年英語八下期末統考模擬試題含答案
- 浙江省衢州市初三數2025年英語七年級第二學期期末達標測試試題含答案
- 網絡運營培訓心得體會
- 天府新區航空職業學院《制冷工程》2023-2024學年第一學期期末試卷
- 大連醫科大學《兒童心理行為測評》2023-2024學年第一學期期末試卷
- 武漢紡織大學《景觀設計基礎》2023-2024學年第一學期期末試卷
- DG∕TJ 08-87-2016 道路、排水管道成品與半成品施工及驗收規程
- 福建省福州市倉山區2022-2023學年八年級下學期期末英語試卷(含解析)
- 校園文化墻面設計施工流程
- 美學原理2爾雅滿分答案
- MOOC 工程倫理-西南石油大學 中國大學慕課答案
- 九年級上語文課本同步規范漢字字帖
- 24春國家開放大學《教育法學》終結性考試(大作業)參考答案
- JTJ300-2000 港口及航道護岸工程設計與施工規范
- 血管外科科普知識宣傳
- 小米汽車發布會
- 安全應急管理培訓
評論
0/150
提交評論