




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西太原五中新高考考前模擬數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,,,則下列結論正確的是()A. B. C. D.2.的展開式中的系數為()A. B. C. D.3.百年雙中的校訓是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學用隨機模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機產生1到4之間(含1和4)取整數值的隨機數,分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數為一組,表示摸球三次的結果,經隨機模擬產生了以下20組隨機數:141432341342234142243331112322342241244431233214344142134412由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.4.設復數滿足,在復平面內對應的點為,則不可能為()A. B. C. D.5.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.6.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.17.把函數圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.8.已知定義在上的奇函數滿足:(其中),且在區間上是減函數,令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.9.如圖所示,在平面直角坐標系中,是橢圓的右焦點,直線與橢圓交于,兩點,且,則該橢圓的離心率是()A. B. C. D.10.復數(為虛數單位),則的共軛復數在復平面上對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.若函數為自然對數的底數)在區間上不是單調函數,則實數的取值范圍是()A. B. C. D.12.已知是虛數單位,若,則()A. B.2 C. D.10二、填空題:本題共4小題,每小題5分,共20分。13.已知函數為上的奇函數,滿足.則不等式的解集為________.14.等邊的邊長為2,則在方向上的投影為________.15.正四面體的各個點在平面同側,各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.16.設是等比數列的前項的和,成等差數列,則的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)證明:當時,;(2)若函數有三個零點,求實數的取值范圍.18.(12分)已知函數,函數().(1)討論的單調性;(2)證明:當時,.(3)證明:當時,.19.(12分)已知是遞增的等比數列,,且、、成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,,求數列的前項和.20.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.21.(12分)在直角坐標系中,曲線的參數方程為:(其中為參數),直線的參數方程為(其中為參數)(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程;(2)若曲線與直線交于兩點,點的坐標為,求的值.22.(10分)在直角坐標系中,曲線的參數方程為(為參數).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設直線與曲線交于兩點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據指數函數的性質,取得的取值范圍,即可求解,得到答案.【詳解】由指數函數的性質,可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數冪的比較大小,其中解答中熟記指數函數的性質,求得的取值范圍是解答的關鍵,著重考查了計算能力,屬于基礎題.2、C【解析】由題意,根據二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數為.故選C.點睛:此題主要考查二項式定理的通項公式的應用,以及組合數、整數冪的運算等有關方面的知識與技能,屬于中低檔題,也是常考知識點.在二項式定理的應用中,注意區分二項式系數與系數,先求出通項公式,再根據所求問題,通過確定未知的次數,求出,將的值代入通項公式進行計算,從而問題可得解.3、A【解析】
由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數比20即可得解.【詳解】由題意可知當1,2同時出現時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點睛】本題考查了簡單隨機抽樣中隨機數的應用和古典概型概率的計算,屬于基礎題.4、D【解析】
依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經驗證不滿足,故選:D.【點睛】本題主要考查了復數的概念、復數的幾何意義,還考查了推理論證能力,屬于基礎題.5、B【解析】
根據,可知命題的真假,然后對取值,可得命題的真假,最后根據真值表,可得結果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.6、B【解析】
過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數量積的計算,考查圓的方程,屬于基礎題.7、D【解析】
試題分析:把函數圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數的圖象與性質.8、A【解析】因為,所以,即周期為4,因為為奇函數,所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數對稱性代數表示(1)函數為奇函數,函數為偶函數(定義域關于原點對稱);(2)函數關于點對稱,函數關于直線對稱,(3)函數周期為T,則9、A【解析】
聯立直線方程與橢圓方程,解得和的坐標,然后利用向量垂直的坐標表示可得,由離心率定義可得結果.【詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.【點睛】本題考查了直線與橢圓的交點,考查了向量垂直的坐標表示,考查了橢圓的離心率公式,屬于基礎題.10、C【解析】
由復數除法求出,寫出共軛復數,寫出共軛復數對應點坐標即得【詳解】解析:,,對應點為,在第三象限.故選:C.【點睛】本題考查復數的除法運算,共軛復數的概念,復數的幾何意義.掌握復數除法法則是解題關鍵.11、B【解析】
求得的導函數,由此構造函數,根據題意可知在上有變號零點.由此令,利用分離常數法結合換元法,求得的取值范圍.【詳解】,設,要使在區間上不是單調函數,即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數研究函數的單調性,考查方程零點問題的求解策略,考查化歸與轉化的數學思想方法,屬于中檔題.12、C【解析】
根據復數模的性質計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復數模的定義及復數模的性質,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
構造函數,利用導數判斷出函數的單調性,再將所求不等式變形為,利用函數的單調性即可得解.【詳解】設,則,設,則.當時,,此時函數單調遞減;當時,,此時函數單調遞增.所以,函數在處取得極小值,也是最小值,即,,,,即,所以,函數在上為增函數,函數為上的奇函數,則,,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.【點睛】本題主要考查不等式的求解,構造函數,求函數的導數,利用導數和函數單調性之間的關系是解決本題的關鍵.綜合性較強.14、【解析】
建立直角坐標系,結合向量的坐標運算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標系,由題意可知:,,,則:,,且,,據此可知在方向上的投影為.【點睛】本題主要考查平面向量數量積的坐標運算,向量投影的定義與計算等知識,意在考查學生的轉化能力和計算求解能力.15、【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,根據題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉化化歸的思想和空間想象,運算求解的能力,屬于難題,16、2【解析】
設等比數列的公比設為再根據成等差數列利用基本量法求解再根據等比數列各項間的關系求解即可.【詳解】解:等比數列的公比設為成等差數列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數列的基本量求解以及運用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數作出的圖象即可.【詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,當時,,故在單調遞減,在,上單調遞增,作出的圖象,易得.故實數的取值范圍為.【點睛】本題考查利用導數證明不等式以及研究函數零點個數問題,考查學生數形結合的思想,是一道中檔題.18、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】
(1)求出的定義域,導函數,對參數、分類討論得到答案.(2)設函數,求導說明函數的單調性,求出函數的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當,時,,則在上單調遞增;當,時,令,得,令,得,則在上單調遞減,在上單調遞增;當,時,,則在上單調遞減;當,時,令,得,令,得,則在上單調遞增,在上單調遞減;(2)證明:設函數,則.因為,所以,,則,從而在上單調遞減,所以,即.(3)證明:當時,.由(1)知,,所以,即.當時,,,則,即,又,所以,即.【點睛】本題考查利用導數研究含參函數的單調性,利用導數證明不等式,屬于難題.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)設等比數列的公比為,根據題中條件求出的值,結合等比數列的通項公式可得出數列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【詳解】(Ⅰ)設數列的公比為,由題意及,知.、、成等差數列成等差數列,,,即,解得或(舍去),.數列的通項公式為;(Ⅱ),.【點睛】本題考查等比數列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎題.20、(1)證明見解析;(2).【解析】
(1)證明,得到平面,得到證明.(2)以點為坐標原點,建立如圖所示的空間直角坐標系,平面的一個法向量為,平面的一個法向量為,計算夾角得到答案.【詳解】(1)因為四邊形是菱形,且,所以是等邊三角形,又因為是的中點,所以,又因為,,所以,又,,,所以,又,,所以平面,所以,又因為是菱形,,所以,又,所以平面,所以.(2)由題意結合菱形的性質易知,,,以點為坐標原點,建立如圖所示的空間直角坐標系,則,,,,,設平面的一個法向量為,則:,據此可得平面的一個法向量為,設平面的一個法向量為,則:,據此可得平面的一個法向量為,,平面與平面所成銳二面角的余弦值.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程熱力學核心知識點解答集萃
- 垃圾爐排爐技改工程實施方案(模板)
- 定語和定語從句的教學要點
- 護理實習生自我同情與生涯適應力的關聯性分析
- 網絡營銷渠道合作協議規范
- 房產權益轉讓協議書
- 鄉村健康產業技術創新與人才培養
- 《詩歌創作與賞析技巧:高中語文綜合教學》
- 工程熱力學與傳熱學知識重點歸納題
- 全球互聯網發展進度統計表
- 合同能源管理協議書范本
- 年產萬噸乙酸乙酯的工藝設計
- 壓力容器使用年度檢查報告(范本)
- 污水處理廠化驗室設備明細1217
- 外研版高一英語必修一重點總結
- 腰椎間盤突出癥的診斷、鑒別診斷與分型
- 02 微電子制造裝備概述
- 價值流圖析VSM(美的資料)
- 手足口病培訓課件(ppt)
- 測試案例附錄DTX1800使用
- 關于德國能源轉型的十二個見解
評論
0/150
提交評論