2024屆遼寧省遼陽太子河區五校聯考中考聯考數學試題含解析_第1頁
2024屆遼寧省遼陽太子河區五校聯考中考聯考數學試題含解析_第2頁
2024屆遼寧省遼陽太子河區五校聯考中考聯考數學試題含解析_第3頁
2024屆遼寧省遼陽太子河區五校聯考中考聯考數學試題含解析_第4頁
2024屆遼寧省遼陽太子河區五校聯考中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆遼寧省遼陽太子河區五校聯考中考聯考數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.的倒數的絕對值是()A. B. C. D.2.一個數和它的倒數相等,則這個數是()A.1 B.0 C.±1 D.±1和03.對于數據:6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數據的平均數是6,中位數是6 B.這組數據的平均數是6,中位數是7C.這組數據的平均數是5,中位數是6 D.這組數據的平均數是5,中位數是74.在同一直角坐標系中,二次函數y=x2與反比例函數y=1x(x>0)的圖象如圖所示,若兩個函數圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數,令ω=x1+x2+x3A.1B.mC.m2D.15.如圖,將含60°角的直角三角板ABC繞頂點A順時針旋轉45°度后得到△AB′C′,點B經過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π6.一個多邊形的每個內角均為120°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形7.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點,∠CAD=100°,則∠B的度數是()A.100° B.80° C.60° D.50°8.有理數a,b在數軸上的對應點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④9.某果園2011年水果產量為100噸,2013年水果產量為144噸,求該果園水果產量的年平均增長率.設該果園水果產量的年平均增長率為x,則根據題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=14410.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.12.若+(y﹣2018)2=0,則x﹣2+y0=_____.13.寫出一個大于3且小于4的無理數:___________.14.如圖,點O(0,0),B(0,1)是正方形OBB1C的兩個頂點,以對角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對角線OB2為一邊作正方形OB2B3C2,……,依次下去.則點B6的坐標____________.15.若代數式在實數范圍內有意義,則x的取值范圍是_______.16.當a,b互為相反數,則代數式a2+ab﹣2的值為_____.三、解答題(共8題,共72分)17.(8分)如圖,在矩形ABCD中,AB═2,AD=,P是BC邊上的一點,且BP=2CP.(1)用尺規在圖①中作出CD邊上的中點E,連接AE、BE(保留作圖痕跡,不寫作法);(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說明理由;(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點F,連接AP,不添加輔助線,△PFB能否由都經過P點的兩次變換與△PAE組成一個等腰三角形?如果能,說明理由,并寫出兩種方法(指出對稱軸、旋轉中心、旋轉方向和平移距離)18.(8分)如圖,△ABC是⊙O的內接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當為何值時,AB?AC的值最大?19.(8分)計算:.20.(8分)下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應值,(表格中的符號“…”表示該項數據已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達式(2)拋物線y=ax2+bx+c的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上一點,直線AM交對稱軸右側的拋物線于點B,當△ADM與△BDM的面積比為2:3時,求B點坐標;(3)在(2)的條件下,設線段BD與x軸交于點C,試寫出∠BAD和∠DCO的數量關系,并說明理由.21.(8分)如圖,為的直徑,,為上一點,過點作的弦,設.(1)若時,求、的度數各是多少?(2)當時,是否存在正實數,使弦最短?如果存在,求出的值,如果不存在,說明理由;(3)在(1)的條件下,且,求弦的長.22.(10分)在中,,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,,求四邊形BDFG的周長.23.(12分)將二次函數的解析式化為的形式,并指出該函數圖象的開口方向、頂點坐標和對稱軸.24.為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如圖統計圖:根據統計圖所提供的倍息,解答下列問題:(1)本次抽樣調查中的學生人數是多少人;(2)補全條形統計圖;(3)若該校共有2000名學生,請根據統計結果估計該校課余興趣愛好為“打球”的學生人數;(4)現有愛好舞蹈的兩名男生兩名女生想參加舞蹈社,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

直接利用倒數的定義結合絕對值的性質分析得出答案.【詳解】解:?的倒數為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數的定義與絕對值的性質,解題的關鍵是熟練的掌握倒數的定義與絕對值的性質.2、C【解析】

根據倒數的定義即可求解.【詳解】的倒數等于它本身,故符合題意.

故選:.【點睛】主要考查倒數的概念及性質.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.3、C【解析】

根據題目中的數據可以按照從小到大的順序排列,從而可以求得這組數據的平均數和中位數.【詳解】對于數據:6,3,4,7,6,0,1,這組數據按照從小到大排列是:0,3,4,6,6,7,1,這組數據的平均數是:中位數是6,故選C.【點睛】本題考查了平均數、中位數的求法,解決本題的關鍵是明確它們的意義才會計算,求平均數是用一組數據的和除以這組數據的個數;中位數的求法分兩種情況:把一組數據從小到大排成一列,正中間如果是一個數,這個數就是中位數,如果正中間是兩個數,那中位數是這兩個數的平均數.4、D【解析】

本題主要考察二次函數與反比例函數的圖像和性質.【詳解】令二次函數中y=m.即x2=m,解得x=m或x=-m.令反比例函數中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數之間的聯系,從而解答.5、A【解析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據旋轉的性質知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點:1.扇形面積的計算;2.旋轉的性質.6、C【解析】由題意得,180°(n-2)=120°,解得n=6.故選C.7、B【解析】試題分析:如圖,翻折△ACD,點A落在A′處,可知∠A=∠A′=100°,然后由圓內接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B8、B【解析】分析:本題是考察數軸上的點的大小的關系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.9、D【解析】試題分析:2013年的產量=2011年的產量×(1+年平均增長率)2,把相關數值代入即可.解:2012年的產量為100(1+x),2013年的產量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點評:考查列一元二次方程;得到2013年產量的等量關系是解決本題的關鍵.10、A【解析】

根據銳角三角函數的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點睛】本題考查了銳角三角函數的定義,熟記銳角三角函數的定義內容是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因為∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.12、1【解析】

直接利用偶次方的性質以及二次根式的性質分別化簡得出答案.【詳解】解:∵+(y﹣1018)1=0,∴x﹣1=0,y﹣1018=0,解得:x=1,y=1018,則x﹣1+y0=1﹣1+10180=1+1=1.故答案為:1.【點睛】此題主要考查了非負數的性質,正確得出x,y的值是解題關鍵.13、如等,答案不唯一.【解析】

本題考查無理數的概念.無限不循環小數叫做無理數.介于和之間的無理數有無窮多個,因為,故而9和16都是完全平方數,都是無理數.14、(-1,0)【解析】根據已知條件由圖中可以得到B1所在的正方形的對角線長為,B2所在的正方形的對角線長為()2,B3所在的正方形的對角線長為()3;B4所在的正方形的對角線長為()4;B5所在的正方形的對角線長為()5;可推出B6所在的正方形的對角線長為()6=1.又因為B6在x軸負半軸,所以B6(-1,0).解:如圖所示∵正方形OBB1C,∴OB1=,B1所在的象限為第一象限;∴OB2=()2,B2在x軸正半軸;∴OB3=()3,B3所在的象限為第四象限;∴OB4=()4,B4在y軸負半軸;∴OB5=()5,B5所在的象限為第三象限;∴OB6=()6=1,B6在x軸負半軸.∴B6(-1,0).故答案為(-1,0).15、【解析】先根據二次根式有意義的條件列出關于x的不等式,求出x的取值范圍即可.解:∵在實數范圍內有意義,∴x-1≥2,解得x≥1.故答案為x≥1.本題考查的是二次根式有意義的條件,即被開方數大于等于2.16、﹣1.【解析】分析:由已知易得:a+b=0,再把代數式a1+ab-1化為為a(a+b)-1即可求得其值了.詳解:∵a與b互為相反數,∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案為:-1.點睛:知道“互為相反數的兩數的和為0”及“能夠把a1+ab-1化為為a(a+b)-1”是正確解答本題的關鍵.三、解答題(共8題,共72分)17、(1)作圖見解析;(2)EB是平分∠AEC,理由見解析;(3)△PFB能由都經過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉120°和△EPA重合,①沿PF折疊,②沿AE折疊.【解析】【分析】(1)根據作線段的垂直平分線的方法作圖即可得出結論;(2)先求出DE=CE=1,進而判斷出△ADE≌△BCE,得出∠AED=∠BEC,再用銳角三角函數求出∠AED,即可得出結論;(3)先判斷出△AEP≌△FBP,即可得出結論.【詳解】(1)依題意作出圖形如圖①所示;(2)EB是平分∠AEC,理由:∵四邊形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵點E是CD的中點,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC==,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都經過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉120°和△EPA重合,①沿PF折疊,②沿AE折疊.【點睛】本題考查了矩形的性質,全等三角形的判定和性質,解直角三角形,圖形的變換等,熟練掌握和靈活應用相關的性質與定理、判斷出△AEP≌△△FBP是解本題的關鍵.18、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據此得出關于d的二次函數,利用二次函數的性質可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當d=,即OM=時,AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時.點睛:本題主要考查圓的綜合問題,解題的關鍵是掌握圓的有關性質、圓內接四邊形的性質及菱形的性質、相似三角形的判定與性質、二次函數的性質等知識點.19、【解析】

直接利用負整數指數冪的性質以及絕對值的性質、零指數冪的性質以及特殊角的三角函數值化簡進而得出答案.【詳解】原式=9﹣2+1﹣2=.【點睛】本題考查了實數運算,正確化簡各數是解題的關鍵.20、(1)y=x2﹣4x+2;(2)點B的坐標為(5,7);(1)∠BAD和∠DCO互補,理由詳見解析.【解析】

(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,此題得解;(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結合點A的坐標即可求出點B的橫坐標,再利用二次函數圖象上點的坐標特征即可求出點B的坐標;(1)利用二次函數圖象上點的坐標特征可求出A、D的坐標,過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,根據點B、D的坐標利用待定系數法可求出直線BD的解析式,利用一次函數圖象上點的坐標特征可求出點N的坐標,利用兩點間的距離公式可求出BA、BD、BN的長度,由三者間的關系結合∠ABD=∠NBA,可證出△ABD∽△NBA,根據相似三角形的性質可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互補.【詳解】(1)當x=1時,y=ax2=1,解得:a=1;將(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴拋物線的表達式為y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM與△BDM的面積比為2:1,∴點A到拋物線的距離與點B到拋物線的距離比為2:1.∵拋物線y=x2﹣4x+2的對稱軸為直線x=﹣=2,點A的橫坐標為0,∴點B到拋物線的距離為1,∴點B的橫坐標為1+2=5,∴點B的坐標為(5,7).(1)∠BAD和∠DCO互補,理由如下:當x=0時,y=x2﹣4x+2=2,∴點A的坐標為(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴點D的坐標為(2,﹣2).過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,如圖所示.設直線BD的表達式為y=mx+n(m≠0),將B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直線BD的表達式為y=1x﹣2.當y=2時,有1x﹣2=2,解得:x=,∴點N的坐標為(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互補.【點睛】本題是二次函數綜合題,考查了待定系數法求二次函數和一次函數解析式、等底三角形面積的關系、二次函數的圖像與性質、相似三角形的判定與性質.熟練掌握待定系數法是解(1)的關鍵;熟練掌握等底三角形面積的關系式解(2)的關鍵;證明△ABD∽△NBA是解(1)的關鍵.21、(1),;(2)見解析;(3).【解析】

(1)連結AD、BD,利用m求出角的關系進而求出∠BCD、∠ACD的度數;

(2)連結,由所給關系式結合直徑求出AP,OP,根據弦CD最短,求出∠BCD、∠ACD的度數,即可求出m的值.

(3)連結AD、BD,先求出AD,BD,AP,BP的長度,利用△APC∽△DPB和△CPB∽△APD得出比例關系式,得出比例關系式結合勾股定理求出CP,PD,即可求出CD.【詳解】解:(1)如圖1,連結、.是的直徑,又,,(2)如圖2,連結.,,,則,解得要使最短,則于,,,故存在這樣的值,且;(3)如圖3,連結、.由(1)可得,,,,,,,,①,②同理,③,由①得,由③得,在中,,,由②,得,.【點睛】本題考查了相似三角形的判定與性質和銳角三角函數關系和圓周角定理等知識,掌握圓周角定理以及垂徑定理是解題的關鍵.22、(1)證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論